R语言泊松Poisson回归模型预测人口死亡率和期望寿命

科技   科技   2024-11-12 00:58   浙江  


原文链接:http://tecdat.cn/?p=18782


本文我们讨论了期望寿命的计算。人口统计模型的起点是死亡率表。但是,这种假设有偏差,因为它假设生活条件不会得到改善点击文末“阅读原文”获取完整代码数据


相关视频


为了正确处理问题,我们使用了更完整的数据,其中死亡人数根据x岁而定,还包括日期t。


DE=read.table("DE.txt",skip = 3,header=TRUE)
EXPS=read.table("EXPS.txt",skip = 3,header=TRUE)

 我们用 Dx,t表示死亡人数,Ex,t表示暴露人数。因此,对于在日期t上x岁的某人,在该年死亡的概率为 qx,t = Dx,t / Ex,t。这些数据存储在矩阵中进行可视化,存储在数据库中进行回归。


QF[QF==0]=NA
QH[QH==0]=NA

 必须进行一些修改以避免出现零值的问题,因为(i)我们求出比率(ii)然后我们对数化)。我们可以可视化为x和t的函数。

persp(log(QF))

 或


persp3d(ages,annees,log(QH),col="light blue")

 

为了模拟qx,t的演化,我们可以从Lee&Carter(1992)的模型中获得启发,该模型  假设log (qx,t)= Ax + Bx⋅Kt。A =(A0,A1,⋯,A110)在某种程度上是log(qx,t)。K =(K1816,K1817,⋯,K2015)使我们了解生活条件的改善,一年内死亡的可能性降低。这些改善不是均匀的,因此我们使用B =(B0,B1,⋯,B110)来使改善取决于l '年龄。


点击标题查阅往期内容


数据分享|R语言零膨胀泊松回归ZERO-INFLATED POISSON(ZIP)模型分析露营钓鱼数据实例估计IRR和OR


左右滑动查看更多


01

02

03

04



为了估计参数A,B和K,我们尝试使用二项式模型。B(Ex,t,qx,t),这是人寿保险的基本模型。这里Dx,t〜B(Ex,t,exp [ Ax + Bx⋅Kt])。

另一个线索是使用小数定律,即如果概率低(一年中的死亡概率就是这种情况),则二项式定律可以近似由泊松分布。我们在这里用到了Poisson回归,其解释变量为年龄x,年t和暴露量为偏移变量。唯一的问题是它不是线性回归。我们这里有非线性模型,因为E [ Dx,t] =(exp[log(Ex,t)+ Ax + Bx⋅Kt])。


gnm( DH ~ offset(log(EH) + as.factor(age) +
Multas.factor(age,as.factor(annee),
family = poisson(link="log")

 我们有估计系数A ^,B ^和K ^。


Ax=reg$coefficients[2:111]
Bx=reg$coefficients[112:222]
Kt=reg$coefficients[223:length(reg$coefficients)]

我们可以表示三组系数。首先 A ^表示平均变化,

plot(ages[-1],Ax)

 

我们还可以用 K ^来绘制时间。

 

 

同样,该模型不可被识别。简而言之,改善没有任何意义。我们可以表示-K ^,它的优点是描述了生活条件的改善。最后,让我们作图-B ^

 

 

困难在于,为了预测期望寿命,我们需要针对t的大值(尚未观察到)计算qt,x。例如,某人可能想知道q50,2020(对于1970年出生的人)。我们要使用q50,2020 = exp(A ^ 50 + B ^ 50 K ^ 2020)。问题是K ^ 2020不属于估计数量K ^。

这个想法是Lee&Carter(1992)的初衷,我们可以尝试指数模型或线性模型(在1950年以后的原始K ^序列上)


lm(log(Kt[idx])~ann[idx])
futur=2016:2125

lm(Kt[idx]~ann[idx])

points(futur,pr,col="blue")

 

然后,我们可以根据过去的数据建立一系列预测,q ^ x,t = exp [A ^ x + B ^ x K ^ t],以及未来数据q〜x,t = exp [A ^ x + B ^ x K〜t]。

我们保留过去的数据,这里是1880年死亡的概率


plot(BASE$x[BASE$t==1880],BASE$pred[BASE$t==1880],
log="y")

 

 

同样,我们在未来(此处为2050年)使用这两种模型


BASE2$Qpred1=exp(cste+BASE2$Ax+BASE2$Bx*BASE2$Kt1)


plot(BASE2$x[BASE2$t==2050],BASE2$Qpred1[BASE2$t==
2050],log="y")

 

 

用于指数预测

 对于线性预测,对1968年出生的人,我们有第二年死亡的概率


if(sbase$t[i]<= 2015)
{vq[i]=BASE[ BASE$x==sbase$x[i]) & BASE$t==sbase$t[i]),"Qpred"]
if(sbase$t[i] <2015)
{vq[i]=BASE2[(BASE2$x==sbase$x[i]) & (BASE2$t==sbase$t[i]),"Qpred2"]

 

 

左边是我们模型估算值,右边是预测值。

要计算出生时的期望寿命,我们使用以下代码

sum(cumprod(exp(-vq[1:110])))
[1] 77.62047

 然后,我们可以做函数可视化这种期望寿命的演变


vP = cumprod(exp(-(sbase$vq[1:110])))
sum(vP)}

 


ANN =1930:2010
plot(ANN ,E2)

 

 

如果我们看一下变化,我们发现每年(大约)有0.25的变化

 

 

 

另一方面,如果我们采用保留Kt指数变化的预测,则可以得出

 

 

结果不符合实际,它更少地考虑曲线的变化。

 

 





本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言泊松Poisson回归模型预测人口死亡率和期望寿命》。




点击标题查阅往期内容

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数
R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间
R语言和Python用泊松过程扩展:霍克斯过程Hawkes Processes分析比特币交易数据订单到达自激过程时间序列
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
生态学模拟对广义线性混合模型GLMM进行功率(功效、效能、效力)分析power analysis环境监测数据
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
有限混合模型聚类FMM、广义线性回归模型GLM混合应用分析威士忌市场和研究专利申请数据
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言广义线性模型GLM、多项式回归和广义可加模型GAM预测泰坦尼克号幸存者
R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)
R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间
R语言广义线性模型(GLMs)算法和零膨胀模型分析
R语言中广义线性模型(GLM)中的分布和连接函数分析
R语言中GLM(广义线性模型),非线性和异方差可视化分析
R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分析保险资金投资组合信用风险敞口
用广义加性模型GAM进行时间序列分析
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析
用广义加性模型GAM进行时间序列分析
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析


拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章