人工智能在骨科术中导航的应用进展

文摘   2025-01-20 18:02   浙江  

小贴士

全书详细资讯直接点击文章:新书资讯丨智能中医辅助诊断技术与装备)。

骨科手术的高风险和复杂性使引入人工智能(artificialintelligence,AI)技术成为必要,以提高手术质量和降低手术风险。基于AI的手术导航系统已广泛应用于包括髋、膝关节置换术、脊柱手术、软组织修复、截骨术、骨肿瘤切除术以及骨折复位和固定等多种骨科临床实践中。

骨科手术导航系统通常包含以下几个基本步骤:(1)术前计划,即数据采集与建模;(2)配准术前与术者数据、实时跟踪手术器械;(3)可视化关键结构信息;(4)术后验证,即比较术后结果与术前计划的结果。

(一)图像配准

无论选择何种影像学检查,导航系统首先必须建立术前或术中影像学与患者解剖结构之间的空间关系,建立这种关系是通过图像配准技术来实现的。在术前采集的 3D 数据(基于CT或MRI图像)或构建的3D解剖模型用于手术指导前,必须通过配准过程将其匹配到手术场景内患者的解剖系统中,并在三维坐标系中显示其位置,这也是在成像数据的“虚拟”坐标系与患者参考阵列定义的“真实”坐标系之间建立关系的过程。配准的精准度会直接影响导航程序中的后续所有步骤:一方面,配准可能发生在导航前,但在这种情况下,配准后地标的任何移动都会影响导航的准确性;另一方面,如果使用术中3D成像,此时的配准过程可以在手术过程中实现自动化。

图像配准根据维度可以分为时间序列和空间维度。基于时间序列的配准是指在不同时间序列上对齐相同或不同模式的医学图像;而基于空间维度的配准按照图像空间的几何维度数量又可以划分为 2D ⁃2D、2D ⁃3D 和 3D ⁃3D 配准。大多数骨科导航系统是利用2D⁃3D的图像配准,这是一种估计术前3D体积结构(CT、MRI或3D模型)与其2D图像(术中“C”型臂X线机透视或内镜成像)之间的空间关系的技术。

近期开发了许多基于AI的2D⁃3D图像配准技术。Kle⁃bingat等报告了一种能够自动确定全髋关节置换手术参数的方法。术者使用基于卷积神经网络的2D⁃3D配准方法准确地评估全髋关节置换术中植入物磨损、前倾和倾斜度的参数,并在患者髋关节X线片上准确分割、定位骨盆(如股骨头或髋臼杯区域)和假体组件。Guo 等引入全卷积网络框架,在无须任何用户交互的情况下完成术前CT数据和术中X线片之间的刚性配准,利用DL算法完成了患者特定解剖的分割细化,并在74例患者的骨盆上进行了验证,结果显示全卷积网络的配准效果稳定,用时短(<0.1s)。该方法不仅保证了可变形图像配准的准确性,而且大幅减少了图像配准所需的时间。Lutter等使用2D⁃3D配准确定了膝关节X线片中膝关节的磨损部位和程度,基于卷积神经网络精准分割定位X线片上的假体组件,基于模型的2D⁃3D配准精确计算植入物在膝关节中的空间位置和方向。Van Houtte 等提出了基于图谱的端到端的2D⁃3D配准DL模型,该模型将3D图谱中的图像配准到股骨X线片上,通过对扭曲图集图像或任何其他辅助数据的变形场进行回归,准确地重建了患者的股骨 CT 图像并进行了验证,证实了其精准性。Zhang 等提出了时间一致的2D⁃3D配准技术对颅面结构进行3D生长测量,使用基于卷积神经网络的回归和初始化相应的3D数据形成了对应的锥形束CT图像的密集位移场。Han等基于骨折复位手术导航提出多体2D⁃3D配准方法,将术前骨盆骨折复位计划配准到患者特定的解剖结构中,以跟踪术中2D透视图像中的多个骨碎片,在骨盆表面配准的误差降低至(2.2±0.3)mm。这些基于AI的2D⁃3D配准方法显著提高了骨科手术实时导航的效率、精准度和稳定性。

(二)实时跟踪

手术导航系统的导航器是一种空间位置跟踪设备,可以确定对象的位置和方向,并以 3D 坐标的形式提供这些数据。实时跟踪是同步骨科导航中各种信息的关键步骤,在进行手术操作时无论采用何种切口,术中只能显露出部分病灶,病变之间或病变组织与正常组织之间的空间位置关系不可见,给手术操作增加了难度。跟踪设备完美地解决了这个问题。手术导航系统利用跟踪设备实时确定手术器械、病变部位及手术对象的3D位置和方向,帮助术者准确、有效地校准和定位。骨科手术导航系统目前在全髋关节置换术、全膝关节置换术、脊柱外科手术和骨折修复中广泛应用,其中最主要的一个原因是骨骼结构比形变较大的软组织更容易被跟踪。

许多早期的手术导航系统使用基于物理介质的跟踪方法,如声学、磁性、光学和机械等方法,其中光学跟踪系统因其精准度高和非接触式等优势一度成为骨科术中导航的金标准。近年来,许多研究人员在光学导航的基础上开发了AI 算法,以提高骨科手术的准确性和效率。与其他导航系统相比,AI 光学导航系统的巨大优势在于算法只需要几秒就可以完成目标跟踪。von Atzigen 等开发了 HoloYolo 系统,利用ML跟踪椎弓根螺钉尖端的空间位置,在无接触的情况下导航脊柱钉棒系统的植入。随着深度传感技术的快速发展,一些研究开始探索使用 RGB⁃D 相机来替代光学系统。Liu等描述了一种基于RGB⁃D深度相机和DL的骨骼跟踪的新方法。在手术过程中,RGB⁃D相机反复捕获暴露骨骼的深度图像,深度神经网络使用这些图像学习定位、分割和提取目标骨骼的表面几何形状,随后将提取的表面几何形状与同一骨骼的术前模型进行比较以实现跟踪,研究结果显示平均位移和角度误差分别为2.74 mm和6.66°。Hu等报告了一种基于DL算法的RGB⁃D相机无标记跟踪法,可以辅助完成膝关节置换手术。DL模型动态定位2D感兴趣区域和实时分割3D骨组织,结果证实该方法对目标遮挡具有稳健性,且跟踪误差在4 mm以下,可基本满足临床要求。

(三)3D可视化

骨科导航系统中采集的实时多模态数据为医生提供了关键的结构信息,并最大限度地减少对手术过程的干扰。骨科术前和术中产生了大量的多模态数据,尤其是3D数据(CT和MRI等),这些数据必须以直观可视化的方式呈现给术者,以显示术区重要的解剖结构。3D可视化技术基于患者的2D医学图像数据使用计算机图形技术呈现出3D结构,利用分割和渲染等方法将感兴趣目标从结构中分离出来,使医生可以更加直观、清晰地观察患者的解剖结构以及手术器械的移动情况,为手术方案的调整和入路的选择提供了决策支持,提高手术效率和精准性。

AI的发展促进了虚拟现实(virtualreality,VR)和增强现实(augmentedreality,AR)的进步。AR 和 VR 结合跟踪设备将物体的空间信息实时传送至显示器或监视器上,以更直观的形式可视化相关结构。AR和VR的实现需要依靠快速的数据处理能力,而AI在增强视频和图像数据分辨率方面的优势可以降低系统计算的压力和软件、硬件的成本。AR、VR 和 AI 的结合产生了快速准确的导航系统。Chen等开发了基于AR/AI的手术导航系统,可自动识别患者的骨盆结构并实时跟踪手术器械,同时在术者的头戴式显示器上实时渲染虚拟解剖模型,使术者清楚地观察骨盆结构。Choi等开发了一种基于AR/AI的便携式手术导航设备,用于实时显示骨肿瘤手术过程中的安全间隙。该系统通过与手术器械相连,实时反馈切除平面和最小间距,帮助术者在手术过程中准确切除肿瘤区域。Auloge 等评估了基于AR/AI 的新型导航系统的可行性、准确性、安全性和患者的辐射暴露量。在对椎体压缩性骨折患者进行经皮椎体成形术时,AR/AI系统均可识别目标椎体并生成安全准确的手术轨迹,穿刺针定位的准确性与透视辅助相似,但辐射剂量降低了 50%。Ma等提出采用 AR/AI 导航系统辅助脊柱手术中的椎弓根螺钉放置,利用 DL 算法将 3D 解剖标记配准到脊柱的 CT 图像,AR/AI 导航系统显示平均位移误差为3.79 mm,平均角度误差为4.51 ° 。

未来,随着数据库中大数据可靠性与稳定性的提高,以及通过医生与工程师共同参与制定合理算法,基于AI的术中导航必能成为骨科医生的利器。

来源:医学AI在线AIMonline

石榴号
石榴号关注中医药+现代科技;为您提供:中医药学、循证医学、大数据与智能辅助诊断等方面的信息。
 最新文章