土壤碳循环|Geoderma:CAZyme家族调控毛乌素沙地植被恢复过程中土壤有机碳组成的变化

文摘   2024-11-22 07:05   德国  

点击蓝字↑↑↑“农作未来(FarmingFuture)”,轻松关注,农作制度研究与您同行!


编译:郝洪剑

原创微文,欢迎转发转载。


文章信息





原名:The CAZyme family regulates the changes in soil organic carbon composition during vegetation restoration in the Mu Us desert

译名:CAZyme家族调控毛乌素沙地植被恢复过程中土壤有机碳组成的变化

发表期

2023年影响因子:6

5年影响因子:5.6

第一作者:Zhouchang Yu

通讯作者:Wei Zhang, Peizhi Yang

第一单位:西北农林科技大学草业与草原学院

文章亮点

典型草原和人工林土壤含有较高比例的难降解碳。

降解木质素和肽聚糖的功能基因在典型草原和人工林土壤中丰度更高。

草原化荒漠和荒漠草原中的微生物更倾向于利用活性碳。

有机物的降解过程产生大量甲基碳。

文章摘要
01

研究背景
通过植被恢复进行荒漠化治理具有巨大的土壤固碳潜力。然而,不同恢复类型中土壤有机碳成分的差异,以及对碳水化合物活性酶(CAZymes)作用的了解仍然有限。
02

研究方案

本研究选取中国毛乌素沙漠东部四种不同植被类型的土壤,即草原化沙漠(GD)、荒漠草原(DS)、典型草原(TS)和人工林(AF),测定了其理化性质、碳组分、微生物群落组成和CAZyme基因丰度。

Fig. 1. Situation of the research area. GD: grassland desert; DS: desert steppe; TS: typical steppe; AF: artificial forest.

03

研究结果
我们的研究结果表明,TS恢复显著增加了各类土壤有机碳(SOC)组分的含量。与其他植被类型相比,难降解碳的比例(20-22%)明显更高,并且通过CAZyme亚家族组成分析确定与木质素和肽聚糖表现出强烈相关。GDDS土壤含更高丰度的纤维素和半纤维素分解CAZymes,导致多糖碳和脂肪碳水平较高。在有机物分解过程中,甲基碳成分的变化最为显著,且与ProteobacteriaAcidobacteria的丰度密切相关。


Table 1 The content and composition of soil organic carbon.

Note: GD: grassland desert; DS: desert steppe; TS: typical steppe; AF: artificial forest; Polysaccharide-C: polysaccharide carbon; Methyl-C: methyl carbon; Aromatic-C: aromatic carbon; Carboxylic-C: carboxylic carbon; Aliphatic-C: aliphatic carbon; LC: labile carbon, including polysaccharide carbon, methyl carbon, and aliphatic carbon; RC: recalcitrant carbon, including aromatic carbon and carboxylic carbon. Different lowercase letters indicate significant differences between different vegetation types (p <0.05, ANOVA).

Fig. 2. The abundance of selected GHs and AAs encoding the decomposition of the plant-, fungi-, and bacteria-derived components in different vegetation types of soil. (a) plant-derived cellulose decomposotion; (b) plant-derived hemicellulose decomposition; (c) plant-derived lignin decomposition; (d) fungi-derived chitin decomposition; (e) fungi-derived glucans decomposition; (f) bacteria-derived peptidoglycan decomposition. GD, grassland desert; DS, desert steppe; TS, typical steppe; AF, artificial forest. Different lowercase letters indicate significant differences between different vegetation types (p < 0.05).

Fig. 3. Contribution of microbial (bacterial and fungal) phyla to microbial CAZyme genes for plant-and microbial-derived components decomposition in different vegetation types of soil. (a) contribution of microbial (bacterial and fungal) phyla to plant-derived cellulose decomposotion. (b) contribution of microbial (bacterial and fungal) phyla to plant-derived hemicellulose decomposition. (c) contribution of microbial (bacterial and fungal) phyla to plant-derived lignin decomposition. (d) contribution of microbial (bacterial and fungal) phyla to fungi-derived chitin decomposition. (e) contribution of microbial (bacterial and fungal) phyla to fungi-derived glucans decomposition. (f) contribution of microbial (bacterial and fungal) phyla to bacteria-derived peptidoglycan decomposition.

Fig. 4. Redundant analysis and interpretation ranking chart of the impact of soil carbon components on microbial community composition. *P < 0.05, **P < 0.01 (Monte Carlo permutation test). GD, grassland desert; DS, desert steppe; TS, typical steppe; AF, artificial forest. Polysaccharide-C: ploysaccharide carbon; Methyl-C: methyl carbon; Aromatic-C: aromatic carbon; Carboxylic-C: carboxylic carbon; Aliphatic-C: aliphatic carbon; LC: labile carbon; RC: recalcitrant carbon.

Fig. 5. The relationship between soil physicochemical properties and CAZymes gene abundance and microbial community composition. *P < 0.05, **P < 0.01, ***P < 0.001. Cellulose: CAZymes for plant-derived carbon; Hemicellulose: CAZymes for plant-derived hemicellulose; Lignin: CAZymes for plant-derived lignin; Chitin: CAZymes for fungi-derived chitin; Glucans: CAZymes for fungi-derived glucans; Petidoglycan: CAZymes for bacteria-derived petidoglycan; Microbial community composition: relative abundance of microorganisms at the phylum level; MOISTURE: soil moisture content; SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen; MBP: microbial biomass phosphorus.

Fig. 6. Partial least squares path models (PLS-PM) of the drivers of soil carbon components. The asterisks denote statistically significant differences (*p < 0.05, **p < 0.01). Numbers on arrows are path coefficients indicating a positive (blue) or negative effect (red). Soil nutrition: soil organic carbon, soil total nitrogen and soil total phosphorus.


04

研究结论
我们的研究阐明了不同植被类型恢复下,沙质土壤碳固定和稳定的差异,突出了微生物类群及其CAZyme活性的关键作用。这些见解可以指导加强土地管理策略,以改善干旱生态系统的碳动态。

原文链接:

https://www.sciencedirect.com/science/article/pii/S0016706124003380

农田健康、生态安全

作物高产、资源高效

加入微信群,获取文章PDF

农作未来
“农田健康、生态安全、作物高产、资源高效”,研究成果、综合新闻、领域动态、学术活动等资讯分享
 最新文章