Chip发表国科大杭州高等研究院杨陈楹团队和浙江大学沈伟东团队最新成果:五阶级联全光组合逻辑单元

文摘   2024-12-26 17:00   上海  

FUTURE | 远见


FUTURE | 远见 闵青云 文

近日,国科大杭州高等研究院杨陈楹团队和浙江大学沈伟东团队以「All-optical combinational logical units featuring fifth-order cascade」¹为题在Chip上发表研究论文,介绍了一种基于衍射神经网络的全光组合逻辑单元,展示了在全光时分复用中无延迟处理高速数据传输的能力。共同第一作者为高海淇和邵煜,通讯作者为杨陈楹、沈伟东。Chip是全球唯一聚焦芯片类研究的综合性国际期刊,是入选了国家高起点新刊计划的「三类高质量论文」期刊之一。



现代计算技术正日益遭遇重大限制,促使人们转向诸如光计算2–5等替代范式。在本研究中,作者们介绍了一种基于衍射神经网络6(Diffractive Neural Networks,D2NN)的新型全光组合逻辑单元,该单元仅使用了两层光学调制,就能高效且迅速地执行组合逻辑运算,在本文中,他们利用该结构实现了二进制编码器、二进制解码器、复用器以及解复用器。


图1 | 全光组合逻辑单元的原理图和位置编码设计。a,全光组合逻辑单元的示意图。b,衍射过程的演示。c,分别通过传统电子方法和新型光学方法实现解码器的架构。d,编码器和解码器输入输出平面的位置编码设计。e,多路复用器的输入-输出设计。f,解复用器的输入-输出设计。


这种创新设计提供了更高的处理速度、更好的能效、强大的环境稳定性以及高容错率,使其非常适合于光学计算和通信领域的广泛应用。利用迁移学习,作者们还成功开发五阶级联组合逻辑单元。


图2 | 光学系统的实验装置及实验结果。a,级联全光组合逻辑单元的框架。b,应用于级联全光组合逻辑单元单次训练周期的训练策略示意图。c,预训练加微调的五阶级联时的准确率和损失。d,从头训练五阶级联时的准确率和损失。e,级联逻辑单元的输出图像及其输出强度分布。


此外,作者们展示了全光组合逻辑单元在全光时分复用(Optical Time Division Multiplexing,OTDM)中的开创性应用,证明了它能够在不需要电子转换的情况下无延迟管理高速数据传输的能力。大量的仿真和实验验证突出了此模型作为未来光学计算架构基础技术的潜力,为更加可持续和高效的光学数据处理平台铺平了道路。


图3 | 新型OTDM系统的结构和仿真结果。a,使用我们的组合逻辑单元进行信息传输的新型光时分复用OTDM框架。b,利用全光多路复用器和解复用器随时间变化的OTDM工作流程。c,在一致时钟信号下OTDM的部分仿真结果。这里仅展示了六个输入情况。d,复用器(Multiplexer,MUX)和解复用器(Demultiplexer,DEMUX)中使用的层数与串扰之间的关系。


All-optical combinational logical units featuring fifth-order cascade1


Modern computational technologies are increasingly encountering significant limitations, driving a shift towards alternative paradigms such as optical computing2–5. In this study, the authors introduce novel all-optical combinational logic units based on diffractive neural networks6 (D2NNs), designed to perform high-order logical operations both efficiently and swiftly using only two modulation layers. In this paper, they utilized the structure to implement a binary encoder, a binary decoder, a multiplexer, and a demultiplexer.


Fig. 1 | The schematic and location coding design of the proposed all-optical combinational logical unit. a, Schematic diagram of the proposed all-optical combinational logical unit. b, The demonstration of the diffraction process. c, Implementation architecture of decoders by traditional electronic and novel optical methods respectively. d, The location coding design of the input and output planes for encoder and decoder. e, The input-output design of multiplexer. f, The input-output design of demultiplexer.


This innovative design offers increased processing speed, improved energy efficiency, robust environmental stability, and high error tolerance, making it exceptionally well-suited for a broad spectrum of applications in optical computing and communications. By leveraging transfer learning, the authors successfully developed a fifth-order cascaded combinational logic circuit.


Fig. 2 | The implementation and results of the cascaded all-optical combinational logic circuit. a, The framework of the cascaded all-optical combinational logic circuit. b, Schematic diagram of training strategy applied during single training epoch of the cascaded all-optical combinational logic device. c, The accuracy and loss during fine-tuning the fifth-order cascade. d, The accuracy and loss of the fifth-order cascade during training from scratch. e, The output images and the output intensity distributions of the cascaded logical device.


Furthermore, the authors reveal a pioneering application of our device in optical time division multiplexing (OTDM), demonstrating its capability to manage high-speed data transfer seamlessly without the need for electronic conversion. Extensive simulations and experimental validations highlight the potential of this model as a foundational technology for future optical computing architectures, paving the way toward more sustainable and efficient optical data processing platforms.


Fig. 3 | The framework and simulated results of the novel OTDM system. a, Framework of novel OTDM for information transfer with our combinational logic units. b, The workflow of OTDM using the all-optical multiplexer and demultiplexer over time. c, Part of the simulated results of the OTDM under a consistent clock signal. d, The relationship between the number of layers used in MUX as well as DEMUX and crosstalk.


参考文献


1. Gao, H. et al. All-optical combinational logical units featuring fifth-order cascade. Chip 3, 100112 (2024).

2. Qian, C. et al. Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9, 59 (2020).

3. Zhao, Z. et al. Deep learning-enabled compact optical trigonometric operator with metasurface. PhotoniX 3, 15 (2022).

4. Işıl, Ç. et al. All-optical image denoising using a diffractive visual processor. Light Sci. Appl. 13, 43 (2024).

5. Luo, Y., Mengu, D. & Ozcan, A. Cascadable all-optical NAND gates using diffractive networks. Sci. Rep. 12, 7121 (2022).

6. Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).


论文链接:

https://www.sciencedirect.com/science/article/pii/S2709472324000303


作者简介



高海淇,国科大杭州高等研究院在读硕士生,研究方向主要为智能光计算的原理、技术及应用。


Haiqi Gao is a graduate student at the Hangzhou Institute for Advanced Study, UCAS. His primary research focuses on the principle, techniques and application of intelligent light computing.



邵煜,中国科学院大学杭州高等研究院在读博士,主要研究方向是智能光计算的原理、技术及应用,以及微纳器件的加工。


Yu Shao is a current PhD candidate at the Hangzhou Institute for Advanced Study, UCAS. His primary research focuses on the principles, techniques and applications of intelligent optical computing, as well as fabrication of micro/nano-devices.



杨陈楹,国科大杭州高等研究院副研究员。2016年博士毕业于浙江大学,研究方向包括光学结构功能器件、多维光学感知以及智能光计算,在重要学术期刊发表SCI论文30余篇。


Chenying Yang is an associate research fellow in Hangzhou Institute for Advanced Study, UCAS. He received his PHD degree from Zhejiang University in 2016. His research interests include nanostructured photonic devices, multi-dimensional optical perception and smart optical computing. He has published more than 30 articles in recent years.



沈伟东,浙江大学教授。2006年博士毕业于浙江大学,研究方向包括光学、光电子薄膜以及微纳光子器件,在重要学术期刊发表SCI论文130余篇。


Weidong Shen is a professor in Zhejiang University. He received his PHD degree from Zhejiang University in 2006. His research interests include optical coatings, optoelectronic films and nanostructured photonic devices. He has published more than 130 articles in recent years.


关于Chip


Chip(ISSN:2772-2724,CN:31-2189/O4)是全球唯一聚焦芯片类研究的综合性国际期刊,已入选由中国科协、教育部、科技部、中科院等单位联合实施的「中国科技期刊卓越行动计划高起点新刊项目」、「中国科技期刊卓越行动计划二期项目-英文梯队期刊」,为科技部鼓励发表「三类高质量论文」期刊之一。


Chip期刊由上海交通大学出版,联合Elsevier集团全球发行,并与多家国内外知名学术组织展开合作,为学术会议提供高质量交流平台。

Chip秉承创刊理念: All About Chip,聚焦芯片,兼容并包,旨在发表与芯片相关的各科研领域尖端突破性成果,助力未来芯片科技发展。迄今为止,Chip已在其编委会汇集了来自14个国家的69名世界知名专家学者,其中包括多名中外院士及IEEE、ACM、Optica等知名国际学会终身会士(Fellow)。

Chip第三卷第四期将于2024年12月在爱思维尔Chip官网以金色开放获取形式(Gold Open Access)发布,欢迎访问阅读本期最新文章。

爱思唯尔Chip官网:

https://www.sciencedirect.com/journal/chip

往期鉴赏






延伸阅读






FUTURE|远见

End


FUTURE远见
远见拓边界,卓识创未来
 最新文章