Droplet | 灵敏、可靠表征超疏水表面润湿特性的振荡液滴摩擦计

文摘   2024-11-20 15:01   吉林  

文章导读

准确地表征润湿特性对于开发新一代超疏水表面至关重要。表面润湿性通常使用接触角测量仪 (CAG)、斜板法或张力计进行测量,但由于测量误差或灵敏度低,这些方法通常在超疏水表面上存在着不准确性。近期,芬兰阿尔托大学应用物理系的Robin Ras教授提出了双磁体的改进版振荡液滴摩擦计 (ODT),通过测量在磁场中振荡的水基磁流体液滴的摩擦力,可靠地评估超疏水表面上的润湿特性

作者通过测量四种不同超疏水表面(商用Glaco处理的玻璃片、商用Hydrobead涂层处理的玻璃片、涂有氟聚合物的黑色硅、月桂酸改性的纳米结构铜)的润湿特性,证明ODT比CAG具有更高的精度。此外,ODT可以检测到由CAG无法检测到的表面热重组引起的润湿性能的微小但显著的变化。更重要的是,与任何其他润湿表征技术不同的是,表面越排斥,ODT方法测量误差越低,实验和模拟均证明了其反向灵敏度。

该工作以“Oscillating droplet tribometer for sensitive and reliable wetting characterization of superhydrophobic surfaces” 为题发表在《Droplet》上。美国麻省理工学院Gareth H. McKinley院士针对该研究发表了评论文章。(评论文章内容请见本文文末。)

本文所提出的改进型双磁体 ODT较单磁体 ODT 更能够精确控制作用在铁磁流体液滴上的垂直磁力。振荡液滴下方的单个磁铁将液滴拉向超疏水表面,使液滴变平并增加液滴与表面之间的接触面积。当液滴与两块磁铁的距离相同时,由于对称性,竖直方向的净磁力为零,磁场只产生水平方向的恢复力 (图1),有两个磁铁的ODT允许调整垂直磁力为零(图2),还可以通过改变磁体之间的距离来调整水平恢复力。在这种情况下,双磁体ODT的水平磁力大约是单磁体ODT的两倍,这使得测量时可以使用更稀薄的铁磁流体和更仔细地调整仪器的磁性。

图1 振荡液滴摩擦计 (ODT) 测量与接触角测量仪 (CAG) 测量的比较

图2 单磁体和双磁体ODT设置的比较

此外,通过测量水状铁磁流体液滴在样品表面振荡时所受的摩擦力,ODT可以检测到样品之间的变化,而由于光学测量的接触角有很大的不确定性,CAG无法区分这些变化,证明ODT是一种比CAG更准确的超疏水表面润湿表征技术。他们还使用数值模拟验证了ODT分析方法,并估计了ODT的有效测量范围 (图3)。

图3 用CAG和ODT表征超疏水样品以及两种仪器的限值

作者通过测量热改性铜表面的润湿性 (图4),发现ODT还可以检测由于热处理引起的润湿性能的微小变化,但CAG无法检测到这种变化。在超疏水状态下的精度和误差源分析表明,CAG不够灵敏,无法检测接触角160°以上的超疏水表面之间的差异,而ODT受益于高度可靠的光学分析 (测量液滴位置而不是液滴的形状),可以清楚地区分样品。更重要的是,ODT的灵敏度随着液滴摩擦的减少而增加,该方法非常适合表征高度超疏水的表面。ODT的极高灵敏度促进了新一代高性能超疏水表面的发展。

图4 测量热改性铜表面的润湿性

扫描二维码免费阅读原文
原文链接:https://onlinelibrary.wiley.com/doi/10.1002/dro2.9

通讯作者简介



Robin H. A. Ras



Robin H. A. Ras, 芬兰阿尔托大学应用物理系教授,系主任,芬兰科学院研究员。以第一作者或通讯作者在NATURE、SCIENCE、ACS NANO 、ADVANCED MATERIALS、NATURE COMMUNICATIONS、NATURE PROTOCOLS、COMMUNICATIONS MATERIALS、ACS APPLIED MATERIALS & INTERFACES、SMALL等期刊发表SCI检索论文50余篇。曾获得欧洲研究理事会巩固基金、安东帕仪器分析和特性分析研究奖等。

期刊简介

Droplet是吉林大学与Wiley共同出版的国际性跨学科开放获取期刊。

Droplet旨在成为跨学科的高水平学术交流平台,展示液滴和气泡相关领域的前沿研究成果,推进国际科研传播与合作。

期刊主编由中国科学院院士任露泉教授和美国加利福尼亚大学洛杉矶分校C. J. Kim教授担任。执行主编由香港城市大学王钻开教授担任。编委会由来自16个国家和地区的58名国际知名专家学者组成。

期刊主页
https://onlinelibrary.wiley.com/journal/27314375
 
在线投稿
https://mc.manuscriptcentral.com/droplet
 
邮箱:editorial@wiley-droplet.com
 
编辑部联系人
张成春教授,王丹编审

评论文章


NEWS


Quantifying contact line friction via oscillating droplet dynamics

通过振荡液滴动力学量化接触线摩擦力

Gareth H. McKinley


沃尔夫冈-鲍利(Wolfgang Pauli)曾说过一句名言:“上帝创造了固体,但表面是由魔鬼发明的”。因此,液滴“坐”在疏水表面的情况代表了一种非常特殊的“炼狱”——就如任何试图在这样的三相平衡配置中测量表观接触角的人可以证明的那样。正如Robin Ras和他的同事们所指出的,与接触线钉扎事件相关的固有滞后性、接触面积贴片的消失尺寸以及解决和成像界面的确切位置的困难共同作用,极大地增加了测量接触角值的实验不确定性。在新期刊Droplet的创刊号中,作者报告了一种新的方法,使用振荡液滴摩擦计(ODT)对这种情况进行定量测量。他们利用这项技术展示了对一系列超疏水表面的接触角滞后问题的极大改进,且能够解决与热处理或其他环境因素造成的表面润湿性的小系统性变化趋势。

要理解在超疏水表面上进行测角测量所遇到的地狱级难题,首先要认识到放在这种固体基质上的非润湿液滴的形状和流动性不是由一个、而是两个接触角决定的;前进角(当液滴在干燥的清洁表面上前进时)和后退角(当液滴从现在与上覆液体处于热力学平衡的大块材料上后退时)。这种情况由于分子尺度的润湿膜的存在而进一步复杂化,它们有自己的动力学,由Hamaker常数和表面的地形等参数控制(关于这种微观结构观点的更多细节见De Gennes的开创性综述)。与润湿、粘附和液滴动力学有关的一系列不同的物理化学现象都是由三相接触线的这些不同测量所控制的。我发现了一个特别有用的方法,以图1中的三角图的形式来表示。在横轴上,表面的相对粘性由无量纲的热力学粘附功(其中是液体/蒸汽界面的界面张力)来量化,它测量了将液滴从湿润的固体中移除所需的功。在纵轴上,接触角滞后——由余弦之差测量(),提供了与无柄液滴在表面移动有关的钉扎和摩擦动力学的无维测量——有时也用液滴脱落的滚落角来报告。


图1 A triangular state diagram for conveniently locating and identifying the locus of different wetting states achievable with textured surfaces. The inset image shows the configuration of the oscillating droplet tribometer1 that can be used to accurately measure the contact angle hysteresis and dynamic contact line friction of Cassie–Baxter droplets resting on textured superhydrophobic surfaces.


不幸的是,在许多旧的文章中,往往只报告这两个接触角中的一个,因此不可能在这样的标图上确定液滴/表面对的精确位置。因为液滴在表面上的流动性和动力学随着这两个坐标值的变化而出现很大的差异,所以这点显得十分关键。超亲水表面和“坐”在液体注入表面或 LIS 上的液滴(对液滴流动性的阻力非常小)位于图1的右下角附近。这种状态图上的对角线分别对应于前进接触角的恒定值,,但线上的具体位置会随着不同程度的化学和/或拓扑表面钉扎程度而变化。平坦和干燥的全氟表面可以达到大约120-130°的最大前进接触角;要产生比该等高线所指更高的前进角,则需要逐步提高表面纹理的水平。强不湿润的表面通常通过口头声明来识别,如“接触角大于150°”,但听到这样的声明时,人们应该问问这是指哪个接触角?这就是第二种测量的作用。粘性超疏水纹理表面(或温泽尔状态)具有非常高的滞后性和高水平的接触钉扎,位于最右上方的顶点附近。真正的超疏水表面通常对应着超过150°的接触角,同时接触角滞后小于5°或10°。这样的表面位于图1三角形状态图的左下角顶点附近,Junaid等人的工作就集中在这个区域。因为粘附力和接触角滞后都接近零,所以在这个区域进行准确的实验测量特别困难。一个足够小的液滴的形状(以便重力不起作用)接近于一个完美的球体,该球体被其南极附近的一个小的扁平区域奇异地扰动。这个小的变形区域可以主导不湿润液滴的动态流动性,并且需要特殊的技术在这个区域进行可靠的接触角测量。在本期Droplet描述的改进版仪器中,一小滴铁磁流体水滴被小心翼翼地放置在两个稀土永磁体两极之间的表面上,如图1左上所示。在平衡状态下,液滴位于磁捕集器焦点处的超疏水表面上(如蓝色箭头所示)。当系统回到平衡状态时,液滴(或捕集器)的一个小而快速的横向扰动导致了一系列的阻尼振荡;磁场对易受磁影响的水滴施加了一个横向恢复力,而与粘性液滴接触区域在纹理表面上的局部前进和后退有关的粘性耗散则阻尼了每个连续的振荡。类似的欠阻尼振荡可以在室温莱顿弗罗斯特液滴的运动中观察到,因为它们在一个弯曲的表面上滑行,在这种情况下,由重力来提供恢复力。


作者用高速摄像机测量液滴的动力学,并将所产生的运动与阻尼振荡器的二阶方程进行拟合,从而在测量接触角滞后时具有精确的灵敏度。作者指出,在液滴体积为10μL的情况下,他们的双磁铁ODT技术可以解决小至0.5μN的侧向力和小到的≈0.02接触角滞后值。正如作者所说,这种技术的一个独特的好处是仪器的灵敏度实际上随着滞后的减少而增加(图1中三角形状态图上的液滴位置接近顶点)。这是因为阻尼逐渐降低,因此用于拟合和提取的数据序列有越来越多的点可以拟合,这也是解释了他们的仪器为何会出现这种结果。此外,通过调整磁捕集器中基质的垂直位置,可以系统地改变垂直体的力,部分地将液滴钉扎在纹理表面。在这样的配置中,可以研究扭曲的液体-蒸汽界面附近复杂的局部流体力学流动,可能有助于指导超疏水地形的选择,例如减少摩擦阻力等高级应用。实验表明,在升高的液滴压力下,可达到的摩擦减少水平与接触角的测量最相关。


结合新颖的技术,如这种双磁体ODT(2mODT)来探测,再加上传统的仪器,如动态表面张力仪(可以直接探测分别作为速度的函数)能够提供前所未有的微结构和纹理基质上的湿润动力学分辨率,提供数据帮助验证接触线摩擦的新兴分子动力学模型。我们希望Droplet在今后能发表科学界在这一广泛领域实验、计算和理论方面的贡献。




上下拉动翻看英文原文

It was Wolfgang Pauli who famously said that “God made the bulk, but the surface was invented by the devil”. The intermediate case of a liquid droplet sitting on a hydrophobic textured surface thus represents a very special kind of Purgatory—as anyone who has tried to measure the apparent contact angle in such a three-phase equilibrium configuration can attest. As Robin Ras and his coworkers note the inherent hysteresis associated with contact line pinning events, the vanishing size of the contact area patch and the difficulty of resolving and imaging the exact location of the interface all conspire to dramatically increase the experimental uncertainty of the reported values of the contact angle. In this first issue of the new journal Droplet the authors report on a novel approach to making quantitative measurements of such situations using an Oscillating Droplet Tribometer (ODT). Using this technique, they show greatly improved resolution of the contact angle hysteresis that exists on a range of superhydrophobic surfaces, as well as the ability to resolve small systematic trends in the change of surface wettability associated with thermal treatments or fouling by other environmental factors.


To understand the devilish difficulty in making goniometric measurements on a superhydrophobic surface it is first important to recognize that the shape and mobility of a nonwetting liquid droplet placed on such a solid substrate is governed by not one, but two, contact angles; the advancing angle (as the liquid droplet advances over a dry clean surface) and a receding angle (as the liquid drop recedes from a bulk material that is now in thermodynamic equilibrium with an overlying liquid). The situation is further complicated by the presence of molecular scale wetting films with their own dynamics that are controlled by parameters such as the Hamaker constant and the topography of the surface (for more details of this microstructural viewpoint see the seminal review by De Gennes). A range of different physicochemical phenomena associated with wetting, adhesion, and droplet dynamics are governed by these different measures of the three-phase contact line. I find a particularly useful way of representing this is in the form of the triangular diagram sketched in Figure 1. On the abscissa, the relative stickiness of a surface is quantified by a dimensionless thermodynamic work of adhesio   (where  is the interfacial tension of the liquid/vapor interface), which provides one measure of the work required to remove a liquid droplet from a wetted solid. On the vertical axis the contact angle hysteresis—as measured by the difference in cosines () provides a dimensionless measure of the pinning and frictional dynamics associated with moving a sessile droplet across a surface—and is sometimes reported alternatively in terms of a roll-off angle for droplet shedding.


Figure 1

A triangular state diagram for conveniently locating and identifying the locus of different wetting states achievable with textured surfaces. The inset image shows the configuration of the oscillating droplet tribometer1 that can be used to accurately measure the contact angle hysteresis and dynamic contact line friction of Cassie–Baxter droplets resting on textured superhydrophobic surfaces.


Unfortunately, in many older publications often only one of these two contact angles is reported, and it is thus impossible to identify the precise locus of a droplet/surface pair on such a nomogram. This is critical because the surface mobility and dynamics of drops on surfaces vary dramatically with the values of these two coordinates. Superhydrophilic surfaces, and droplets sitting on liquid-infused surfaces or “LIS” (with very low resistance to droplet mobility) are located near the lower right corner of such a diagram.3 The diagonal lines on this state diagram each correspond to a constant value of the advancing contact angle,, but the specific locus on the line changes with varying levels of chemical and/or topological surface pinning. Flat and dry perfluorinated surfaces can achieve a maximum advancing contact angle of around 120–130°; to generate higher advancing angles than represented by this contour line requires progressively greater levels of surface texturing. Strongly nonwetting surfaces are commonly identified by verbal statements such as “a contact angle of greater than 150°”, but on hearing such statements one should ask which contact angle is this referring to? This is where the second measure comes in. Sticky superhydrophobic textured surfaces (or Wenzel states) with very high hysteresis and high levels of contact line pinning sit near the upper rightmost apex. Truly superhydrophobic surfaces typically correspond to a contact angle of more than 150° and also a contact angle hysteresis of less than 5° or 10°. Such surfaces are located near the lower left apex of this triangular state diagram, and it is this region that the work of Junaid et al.,1 focuses on. Making accurate experimental measurements in this region is especially difficult because both the work of adhesion and the contact angle hysteresis approach zero. The shape of a sufficiently small droplet (so that gravity plays no role) approaches a perfect sphere that is singularly perturbed by a small-flattened region near its south pole. This small deformed region can dominate the dynamical mobility of a nonwetting droplet, and special techniques are required to make reliable contact angle measurements in this region. It is here that the ODT mapping technique, first described by Liimatainen et al.,7 comes into its own. In the improved version of the instrument, described in this inaugural issue of Droplet, a small aqueous droplet of ferrofluid is carefully placed onto a surface between the poles of two rare earth permanent magnets as indicated in the upper left sketch. At equilibrium the droplet sits on the superhydrophobic surface at the focus of the magnetic trap (as indicated by the blue arrows). A small and rapid lateral perturbation of the droplet (or the trap) results in a series of damped oscillations as the system returns to equilibrium; the magnetic field imposes a lateral restoring force on the magnetically susceptible aqueous droplet, and the viscous dissipation associated with the local advancing and receding of the viscous drop's contact region across the textured surface dampens each successive oscillation. Similar under-damped oscillations can be observed in the motion of room-temperature Leidenfrost droplets as they skitter across a curved surface,8 where in this case the restoring force is provided by gravity instead.


Measuring the droplet dynamics with a high-speed camera, and fitting the resulting motion to the second order equation for a damped oscillator, leads to exquisite sensibility in measuring the contact angle hysteresis. The authors report that with droplet volumes on the order of 10 µL their two-magnet ODT technique can resolve lateral forces as small as 0.5 µN and values of the contact angle hysteresis as small as ≈0.02. As the authors explain, a unique benefit of this technique is that the sensitivity of their instrument actually increases as the hysteresis reduces (and the locus of the droplet on the triangular state diagram in Figure 1 approaches the apex). This is because the degree of damping progressively reduces and so the data series used for fitting and extracting has more and more points to fit! Furthermore, by adjusting the vertical position of the substrate in the magnetic trap the vertical body force partially impaling the droplet on the textured surface can be systematically varied. In such a configuration the complex local hydrodynamic flow near the distorted liquid–vapor interface can be investigated. This may help guide selection of superhydrophobic topographies for advanced applications such as frictional drag reduction, where experiments show that the attainable level of friction reduction best correlates with contact angle measurements at elevated droplet pressures.9


Combining novel techniques such as this two magnet ODT (2mODT) to probe, together with conventional instrumentation such as dynamic surface tensiometry (which can directly probe the dynamics of  and  individually as a function of velocity) should provide unprecedented resolution of the dynamics of wetting on microstructured and textured substrates and provide data to help validate emergent molecular kinetic models of contact line friction.10 We hope that Droplet will publish a range of experimental, computational, and theoretical contributions from the scientific community in this broad area in our future issues.



国际仿生工程学会
学会旨在增进各国仿生学者之间的学术交流与合作,推动仿生工程领域科学研究的发展,提升仿生工程人才的培养教育水平。学会秘书处常设在中国长春吉林大学,是目前在中国教育部所属高校中唯一设立秘书处的国际学术组织。
 最新文章