强化冷凝传热被广泛运用于热量管理,余热回收,湿度控制,空气集水和海水淡化, 对于实现能源系统的高效化具有重要的意义。然而在过去近50年中,珠状冷凝模型一直强烈依赖于液滴尺寸分布。
近期,美国达拉斯德克萨斯大学戴贤明教授团队在《Droplet》上发表题为“Coarsening‐induced disappearing droplets contribute to condensation”的文章。该研究团队发现,经典的珠状传热模型无法预测亲水润滑表面上的液滴群聚效应增强的液滴冷凝现象。基于液滴群聚效应,该工作揭示了基于时间平均的经典冷凝传热模型忽略了消失液滴对于冷凝传热的贡献。美国伊利诺伊大学厄巴纳-香槟分校Nenad Miljkovic教授针对该研究发表了评论文章(评论文章内容请见本文文末),指出该工作的成功之处在于,当无法获得完整液滴分布从而导致经典模型失效时,该动态模型能够解释群聚液滴冷凝并帮助更好的理解冷凝传热机理。
经典模型可以预测疏水润滑(hydrophobic SLIPS)和超疏水表面 (superhydrophobic surface)的珠状冷凝性能,但无法预测亲水润滑表面(hydrophilic SLIPS)显著提高的集水量(图1)。作者发现经典模型的失效是由在亲水润滑表面上超低的液滴数量密度造成的。
图1 经典模型在亲水润滑表面(hydrophilic SLIPS)上失效
液滴群聚效应引起了液滴的动态生长。在亲水润滑表面,亲水的润滑剂会自动在液滴周围形成一个坡形油层液面,相当于一座液体桥梁可以连接不同的液滴。液滴群聚效应使微小液滴在不施加外力的情况下,自发的沿着坡形的油层液面反重力往上攀爬并与大液滴融合(图2)。在冷凝过程中,液滴群聚效应可快速去除微小液滴而产生液滴消失的现象,从而导致了超低的液滴数量密度。与其他表面相比,此现象提供了较大的无水面积可供水汽进一步凝结。
液滴群聚效应的发现得益于研究中使用的亲水润滑表面,与先前在疏水润滑表面报道到的斯托克斯流 (Stokes flow) 有根本不同(图3)。亲水性 SLIPS 上的较小接触角产生了较小的坡形的油层弯液面,从而有利于液滴的攀爬。同时,液滴群聚效应加快了液滴的移动速度,从而使液滴的消失频率更高。
图3 群聚效应的动力学
建立新的珠状冷凝动态模型的原因有两个:(1)传统的冷凝模型忽略了通过快速消失的液滴进行的热传递;(2)高频的液滴消失导致了液滴尺寸分布的异常和超小的液滴覆盖率。通过考虑群聚效应引起的消失液滴的热通量,动态冷凝模型可以预测由于群聚效应而导致的传热系数的增强(图4)。此冷凝模型考虑了液滴消失的频率和液滴的覆盖率,这是冷凝的关键参数,但在经典的 Rose 模型中并没有被考虑。
为了进一步阐明动态模型适用于重力引起的脱落液滴,作者在密闭室中对纯蒸汽下的珠状冷凝进行了实验和理论研究(图5)。由于之前的假设认为热通量始终与表面上的可见液滴相关,因此传统的冷凝模型无法预测液滴数量密度。
图5 液滴冷凝的动态模型用于蒸汽冷凝时液滴脱落现象
该工作提出了一种新的冷凝传热动态模型,并且考虑了快速消失的液滴对于液滴群聚效应下和液滴脱落下的珠状冷凝传热的影响,为设计冷凝表面提供了新的理论基础,从而为水和能源系统提供了更先进更准确的设计指南。
扫描二维码免费阅读原文
原文链接:
https://onlinelibrary.wiley.com/doi/full/10.1002/dro2.23
戴贤明,美国达拉斯德克萨斯大学助理教授,其团队主要研究相变传热,微流体,表面科学,余热发电和水收集。曾获得美国自然科学基金委,陆军研究办公室,微流界面会议和工程学院等诸多杰出青年奖。其团队长期招收相关方向研究生,有关其团队具体信息见其网站:
https://labs.utdallas.edu/dai。
郭宗其,于美国达拉斯德克萨斯大学获得博士学位,现为美国明尼苏达大学博士后。在PNAS, Droplet, Cell Reports Physical Science, Advanced Functional Materials, ACS Applied Materials & Interfaces, International Journal of Heat and Mass Transfer等期刊上发表论文9篇。研究方向为液滴定向运动、冷凝集水、传热建模及表面化学等。
Droplet是吉林大学与Wiley共同出版的国际性跨学科开放获取期刊。
Droplet旨在成为跨学科的高水平学术交流平台,展示液滴和气泡相关领域的前沿研究成果,推进国际科研传播与合作。
期刊主编由中国科学院院士任露泉教授和美国加利福尼亚大学洛杉矶分校C. J. Kim教授担任。执行主编由香港城市大学王钻开教授担任。编委会由来自16个国家和地区的58名国际知名专家学者组成。https://onlinelibrary.wiley.com/journal/27314375https://mc.manuscriptcentral.com/droplet邮箱:editorial@wiley-droplet.com液滴群聚效应实验
The case of the coarsening-induced disappearing droplets
Nenad Miljkovic
https://doi.org/10.1002/dro2.26
作者信息:
Nenad Miljkovic1,2,3,4
1 美国伊利诺伊大学厄巴纳-香槟分校机械科学与工程系
2 美国伊利诺伊大学厄巴纳-香槟分校材料研究实验室
3 美国伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系
4 日本福冈西区九州大学国际碳中和能源研究所(WPI‐I2CNER)
通讯:Nenad Miljkovic;美国伊利诺伊大学机械科学与工程系;美国伊利诺伊州厄巴纳市(邮编:61801);邮箱: nmiljkov@illinois.edu
在过去几个世纪里,人类进步一直依赖于技术的不断改善,其中之一便是蒸汽机和蒸汽动力循环的发展。要将热能(煤、天然气、石油、核能)转化为电能,蒸汽动力循环是目前最常用的方法。截至2022年夏季,全球70%以上的电力生产使用蒸汽循环。正如戴贤明和其团队成员所说,提高循环的整体效率,即使只有百分之几,也意味着减少全球气候消极影响的巨大机会。
上个世纪出现了许多可能提高蒸汽循环效率的创新。其中,最直接的方法是最大限度地提高冷凝器内的蒸汽冷凝传热(图1a),这样可以使整体效率提高2%。目前最先进的蒸汽动力循环冷凝器由钢、钛和铜镍等金属制成,这些材料具有水润湿性,一旦蒸汽凝结在它们的表面,就会形成一层薄薄的液体薄膜。这种薄膜冷凝导致冷凝传热系数停留在10 - 100kw /(m2K)的数量级上,从而产生冷却剂与蒸汽饱和温差。几十年前,欧洲的研究人员注意到,在这些金属表面涂上一层薄薄的疏水脂肪酸可促使冷凝传热系数10倍增加(图1b),同时也可以减小蒸汽与冷却剂的温差和冷凝器气压,提高整体效率。
图1蒸汽液滴冷凝的机会和值。(a)提高蒸汽厂效率的改进建议。红框强调了通过设计冷凝器来降低涡轮背压的改进机会。(b)100°C 固定蒸汽温度下,过冷引起蒸汽冷凝热流通量变化。2000年之前在平坦疏水表面上进行的液滴冷凝实验数据由阴影“水滴状区域”内的深灰色线绘制;通过粗糙化和涂层进行表面改性的其他冷凝实验以彩色绘制;努塞尔特(Nusselt)薄膜凝聚模型由灰色虚线绘制,以作比较。
为了预测液滴的冷凝性能,部分研究者将单个液滴生长动态与液滴群聚理论相结合,开发了一些影响深远的详细冷凝模型,通过分析方法、数值模拟方法或深度学习方法,成功地预测了液滴冷凝传热。最近,研究人员发现,在亲水的液体或固体表面上可以促进液滴冷凝。本期的Droplet中,戴贤明及其同事报告了一种新的方法来解决这些经典模型应用于注入液体的亲水表面时的困难。具体来说,作者指出,过去的建模方法不能捕获群聚液滴消失的影响。
液滴在注入润滑剂的亲水表面形成时,半月板介导的液滴群聚发生。经典模型基于时间平均的液滴分布,未能捕捉到这种群聚效应。该论文作者提出了一个考虑液滴群聚影响的动态模型。为了实现高频率液滴消失,作者使用了注入润滑剂的表面,有时也被称为润滑表面(SLIPS),这种表面十分独特,可以实现特殊的形态(平滑度)和化学均匀性。作者通过详细的实验,表明经典模型应用于低水覆盖率(<30%)时就会失效。经过大量光学实验和数据分析,作者选择对经典方法稍作修改(而不是从根本上改变方法),通过添加一个说明液滴群聚的二阶项来修改预聚结液滴数量密度(n(R))。修正的数量密度在试验中通过幂律拟合确定,并通过比较计算结果与实测热流密度( 利用集成数量密度得来的值 )来验证。
由于表面动能释放和平面外液滴跳跃,聚集的液滴跳跃表现出类似的液滴消失现象,只是液滴会从表面跳离。群聚会导致液滴液体在较大液滴处积聚,因此在没有正确分解微尺度液滴时,可以认为是额外的液滴生长。这让我想起了最近的一项研究,即接触线下方阴影水滴的群聚影响液滴生长,这一现象很类似,但不会发生在润滑表面(SLIPS)上。如果开发的动态模型可以应用于阴影液滴,由此解释表观液滴分布的差异,我会很感兴趣。此外,我注意到,如果一个成像系统确实能够解决整个液滴分布( 减小到大约1微米直径的长度),经典模型确实可以很好地预测整体物理现象。戴贤明及其同事的工作的成功之处在于,当传统的分析技术不能用于预测液滴的完整分布以解释群聚效应、促使理解凝结传热物理时,他们做出了改进。希望Droplet在未来能够发表一系列科学界在这一广泛领域的实验、计算和理论成果。
The case of the coarsening-induced disappearing droplets
Nenad Miljkovic
The progress of mankind has depended on incremental technological advancements over the past centuries. One of these was the development of the steam engine and steam power cycle. Currently, the steam power cycle is the most prevalent method used to convert thermal energy (coal, natural gas, oil, nuclear) into electrical energy. As of summer 2022, more than 70% of the global electrical power production uses a steam cycle. As Xianming Dai and his co-workers note, increasing the overall efficiency of the cycle, even by a fraction of a percent, represents an immense opportunity to reduce the adverse effects of global climate.
The past century has seen a number of innovations, which have the potential to enhance the efficiency of the steam cycle. Among these, the most straightforward is to maximize the steam condensation heat transfer inside the condenser (Figure 1a). Doing so can increase the overall efficiency by up to 2%. The current state-of-the-art steam power cycle condensers are made of metals such as steel, titanium, and copper–nickel. These materials are water wetting, resulting in the formation of a thin liquid film once steam condenses on their surface. This filmwise condensation results in a condensation heat transfer coefficient on the order of 10–100 kW/(m2K), which sets the coolant to steam saturation temperature difference. Many decades ago, researchers in Europe noted that coating these metal surfaces with a thin layer of a hydrophobic fatty acid can result in a 10× increase in condensation heat transfer coefficient (Figure 1b). This in turn can reduce the steam to coolant temperature difference and condenser pressure, and increase the overall efficiency.
Figure 1
Opportunities and value of dropwise condensation of steam. (a) Suggested improvements to a steam plant to enhance efficiency. The red box highlights the opportunity for improvement by designing a condenser to decrease turbine back-pressure. 1 (b) Steam condensation heat flux as a function of subcooling for a fixed vapor temperature of 100°C. Dropwise condensation experiments conducted on flat hydrophobic surfaces before 2000 are plotted in the dark gray lines grouped within a shaded “dropwise regime” region; other condensation experiments with surface modification via roughening and coatings are plotted in color; and the Nusselt filmwise condensation model is plotted as a dashed gray line for comparison.
In an effort to predict dropwise condensation performance, a number of seminal works have developed detailed models of condensation by combining individual droplet growth dynamics with droplet population theory. Dropwise condensation heat transfer has been successfully predicted by using analytical approaches, numerical simulations, or deep learning methods. More recently, researchers have discovered that dropwise condensation can be promoted on hydrophilic liquid or solid surfaces. In this issue of Droplet, Xianming Dai and his co-workers report a novel approach to address the challenges facing these classical models when applied to liquid-infused hydrophilic surfaces. Specifically, the authors note that the effect of coarsening-induced disappearance of droplets cannot be captured using past modeling approaches.
When droplets form on a hydrophilic lubricant-infused surface, meniscus-mediated coarsening of droplets occurs. Classical models, which rely on time-averaging of droplet distributions, fail to capture this coarsening effect. The authors propose a dynamic model to account for coarsening effects. To achieve high-frequency droplet disappearance, the authors use a lubricant-infused surface, sometimes termed as a slippery liquid-infused porous surface (SLIPS), which has the unique characteristics of enabling exceptional topographical (smoothness) and chemical homogeneity. Using detailed experiments, the authors show that the classical models break down when applied to dropwise condensation on the SLIPS where a low (<30%) water coverage ratio occurs. Using a host of optical experiments and data analysis, the authors chose to elegantly modify the classical approach (as opposed to radically changing the method) by modifying the precoalescence droplet number density (n(R)) via the addition of a second-order term, which accounts for droplet-coarsening. The modified number density is experimentally determined via power law fitting and verified by comparing the calculated results with measured heat flux (a quantity that utilizes the integrated number density).
Although coalescence-induced droplet jumping shows similar droplet disappearance phenomena due to surface-to-kinetic energy release and out-of-plane droplet jumping, the droplets jump away from the surface. Coarsening results in droplet liquid accumulation at larger droplets, and hence can be perceived as additional droplets growth when not properly resolving the microscale droplets. This fact reminds me of recent work looking at the effect of droplet growth due to coarsening from shaded droplets residing beneath the contact line, which is a similar phenomenon but does not occur on SLIPS. I would be interested if the developed dynamic model could be applied to shaded droplets to account for the discrepancy in apparent droplet distribution. Furthermore, I note that if an imaging system was indeed able to resolve the full droplet distribution (down to approximately 1 µm diameter length scale), the classical models would indeed work well for predicting the overall physical phenomena. Where the work by Xianming Dai and co-workers succeeds is in the ability to modify conventional analysis techniques, which cannot be used to predict the full droplet distribution, and enable them to account for coarsening effects and enable the understanding of condensation heat transfer physics. We hope that Droplet will publish a range of experimental, computational, and theoretical contributions from the scientific community in this broad area in our future issues.