参考文献:https://doi.org/10.1016/j.scitotenv.2019.135590;我国北方地区植被对水分亏缺的响应特征分析
在大尺度研究中,区域水分亏缺通常被定义为系统或区域的水分供需差额。基于区域水量平衡原理,将降水量(P)与潜在蒸散发量(PET)之差定义为区域水文循环过程中的水分亏缺量(D),计算公式为:D = P - PET。其中,D、P、PET的单位均为毫米(mm)。
采用TerraClimate数据集的降水和潜在蒸散发数据,我们计算了1958-2023年研究区的水分亏缺量,并绘制了降水、蒸散和水分亏缺的年际变化趋势。![]()
![]()
![]()
![]()
![]()
var terraclimate = ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE");
var beijing = ee.Geometry.Rectangle([115.42, 39.26, 117.51, 41.05]);
var years = ee.List.sequence(1958, 2023);
var annualData = years.map(function(year) {
var startDate = ee.Date.fromYMD(year, 1, 1);
var endDate = ee.Date.fromYMD(year, 12, 31);
var yearData = terraclimate.filterDate(startDate, endDate).select(['pr', 'pet']);
var annualPrecipitation = yearData.select('pr').sum().rename('Precipitation');
var annualPET = yearData.select('pet').sum().multiply(0.1).rename('PET');
var annualDeficit = annualPrecipitation.subtract(annualPET).rename('Deficit');
var annualImage = annualPrecipitation.addBands(annualPET).addBands(annualDeficit)
.set('year', year);
return annualImage.clip(beijing);
});
var annualCollection = ee.ImageCollection(annualData);
var regionMean = function(image) {
var year = image.get('year');
var meanValues = image.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: beijing,
scale: 4638.3,
bestEffort: true
});
return ee.Feature(null, meanValues.set('year', year));
};
var timeSeries = ee.FeatureCollection(annualCollection.map(regionMean));
var chart = ui.Chart.feature.byFeature(timeSeries, 'year', ['Precipitation', 'PET', 'Deficit'])
.setChartType('LineChart')
.setOptions({
title: 'Annual Precipitation, PET, and Water Deficit in Beijing (1958-2023)',
hAxis: {title: 'Year'},
vAxis: {title: 'Millimeters (mm)'},
lineWidth: 2,
pointSize: 4,
series: {
0: {color: 'blue', label: 'Annual Precipitation (P)'},
1: {color: 'red', label: 'Annual PET'},
2: {color: 'green', label: 'Annual Water Deficit (D)'}
}
});
print(chart);
![]()