封面欣赏
High-performance fingerprint bionic Ecoflex@AgNW/graphite/Pt hybrid strain sensor
Xuyang Zhang, Zhengliang Li, Cuilan Liu, Jiaqi Shan, Xingzhong Guo*, Xiaoyu Zhao, Jianbao Ding, Hui Yang
浙江大学郭兴忠教授团队在Journal of Materiomics第10卷第1期发表了题目为“High-performance fingerprint bionic Ecoflex@AgNW/graphite/Pt hybrid strain sensor”的研究论文。
您可以点击文末“阅读全文”免费下载!
可穿戴电子产品以其优异的柔性、可拉伸性和人机友好性在日常生活中有着广阔的应用前景,而开发同时具有高灵敏度和宽工作范围的应变传感器是研发可穿戴电子产品的关键难点之一。本研究通过抽滤、转移和表面溅射,制备了高性能的Ecoflex@AgNW/石墨/铂混合应变传感器。将AgNW和石墨分散溶液抽滤在褶皱状尼龙滤纸上,将AgNW/石墨层转移到Ecoflex上,并进一步在表面溅射一层金属Pt,从而构建指纹仿生Ecoflex@AgNW/石墨/铂混合应变传感器。该指纹仿生混合应变传感器在应变范围为140%-155%时具有2064.1的高灵敏度,工作范围为0-155%,响应时间短(拉伸和释放过程时间分别为111 ms和189 ms),在5000次循环中具有优异的循环稳定性。该研究为应变传感器的制备提供了一种技术路径,在下一代智能可穿戴电子产品领域具有广阔的应用前景。
https://doi.org/10.1016/j.jmat.2023.03.010
Xuyang Zhang, Zhengliang Li, Cuilan Liu, Jiaqi Shan, Xingzhong Guo*, Xiaoyu Zhao, Jianbao Ding, Hui Yang. High-performance fingerprint bionic Ecoflex@ AgNW/graphite/Pt hybrid strain sensor[J]. Journal of Materiomics, 2024, 10(1): 7-16.
Highlights
Sensor is fabricated via suction filtrating and transferring method.
The sensor shows high sensitivity, wide working range and outstanding stability.
The sensor test results show characteristic signals for specific motions.
The sensor can be applied to monitor human motions on skin and joints.
图文导读
具有可拉伸和使用友好特征的可穿戴电子设备对于人工智能、电子皮肤和疾病诊断等应用至关重要。以医疗器械为例,它在生理信号检测、关节运动控制、运动状态监测等方面发挥着关键作用。众所周知,可穿戴电子设备一般是基于柔性应变传感器,具有将机械变形实时转换为电信号的能力,由柔性弹性体和导电材料制成。这些柔性传感器件解决了传统金属或半导体材料应变传感器本身刚度高、工作范围小(5%)、灵敏度低等问题,因而受到了广泛关注。
目前,柔性可拉伸应变传感器的灵敏度和工作范围是描述传感器最关键的参数。然而,对于普通传感器来说,高灵敏度和宽工作范围是很难同时实现的,因为高灵敏度需要大的电阻变化,这可能会导致工作范围的牺牲。为了解决这一问题,研究者提出了许多方法,如预拉伸和预释放(机械预拉伸、化学膨胀和热退火)、复合材料结构设计(微裂纹、双层材料协同)等。同时,对于许多传感器来说,在表面构筑导电层是具有破坏性的,不可避免地会受到划伤,降低可靠性,缩短使用寿命通常利用封装或使导电填料分布在柔性体内的模式增强结合力,即增加导电层与可拉伸基底之间的结合力,来解决这个问题。另外,选择Ecoflex作为柔性基底不仅提高了传感器的可拉伸性,而且它是一种由聚己二酸丁二酯衍生的可生物降解共聚物,是一种对人体皮肤无毒的聚合物弹性体,非常适合用作可穿戴器件。
本研究展示了Ecoflex@AgNW/石墨/Pt混合应变传感器的设计制备。多层石墨具有良好的导电性、柔韧性和拉伸性,选择多层石墨作为应变传感器的主要导电材料,AgNW作为导电性改进剂,与导电石墨网络形成具有良好拉伸性能的杂化导电网络。为了进一步提高工作范围和压力灵敏度,采用具有特殊皱纹形状的尼龙滤纸作为模板,使导电层具有独特的指纹褶皱结构。复合导电网络制备的传感器件基于指纹状结构和裂纹拓展机理,表现出良好的导电性和宽的工作范围。使用具有出色的拉伸性和生物降解性的Ecoflex-0031作为支撑基材,使导电层与柔性基底结合紧密,提升器件牢固性。为了进一步提高传感器的灵敏度,在导电层上沉积了一层Pt。所构筑得到的Ecoflex@AgNW/石墨/Pt传感器具有优异的传感器性能,为可穿戴式监测应用设计制备提供了一个有效解决方案。
Fig. 1. Fabrication schematic of Ecoflex@AgNW/graphite/Pt strain sensor.
Fig. 2. (a)-(f) Relative resistance changes of the sensor toward the tensile deformation with different ink A+ink G volumes of 25+75, 50+75, 75+75, 100+75, 125+75 and 150+75 mL. (g) Relationship between working range, GF and volumes of ink A of the sensor. (h) SEM images of the sensor with an ink A+ink G volume of 75+75 mL. (i) Micrograph of the sensor (75+75 mL) without tensile deformation. (j) Micrograph of the sensor (75+75 mL) under 50% tensile deformation.
Fig. 3. (a)-(e) Relative resistance changes of the sensor toward the tensile deformation-based sensor (ink A+ink G= 75+75 mL) with different Pt deposition durations (30, 50, 70, 90, 110 s). (f) Relationship between working range, GF and volumes of ink A of the sensor. (g)-(i) Micrographs of the sensor (depositing Pt for 50 s) under different tensile deformation of 0%, 50% and 100%. (j) Cartoon principle diagram of device stretching process.
Fig. 4. (a) U–I curve of the sensor under different strain deformations. (b) Relative resistance changes respond to 1.25%, 2.5% and 3.75% cyclic strains. (c) Relative resistance changes under 35% strain at different frequencies of 0.1, 0.2, 0.4, 0.6 and 0.8 Hz. (d)-(f)Relative resistance changes show the low creep of the strain sensor when being held at different strains and the response time of the stretching and releasing process. (g) Relative resistance variation of 5 000 cyclic stretching-releasing under 37.5% strain.
Fig. 5. (a) Joints of the fingers on which installed the sensors. (b)–(f) Relative resistance changes of the sensors on joints under fingers bending. (g) Joints of the fingers on which installed the sensors. (h) Relative resistance changes the matrix of sensors on joints in different finger gestures.
Fig. 6. (a) Relative resistance changes of the sensor on the facemask when breathing and coughing. (b) Relative resistance changes of the sensor on the throat when drinking and coughing. (c) Relative resistance changes of the sensor on the wrist when bending at different degrees. (d) Relative resistance changes of the sensor on the cheek when puffed off. (e) Relative resistance changes of the sensor on the neck when dropping the head. (f)-(g) Relative resistance changes of the sensor on the elbow and knee when bending at different degrees. (h)-(i) Relative resistance changes of the sensor on the loudspeaker when different words are spoken.
作者介绍
张旭阳,浙江大学材料科学与工程学院博士生,他的研究方向是银纳米线基可拉伸柔性应变传感器件。
郭兴忠,浙江大学材料科学与工程学院教授,博士生导师。2002年获博士学位。他目前的研究方向包括溶胶-凝胶和多孔材料、电催化材料、电池材料和柔性透明电极材料。在Advanced Energy Materials、Advanced Functional Materials、Chemical Engineering Journal 等期刊上发表多篇论文。
往
期
精
选
Journal of Materiomics(JMAT),由中国硅酸盐学会主办。该刊引领材料学科发展前沿,注重报道以材料设计、制备、表征及应用技术为主线的系统性前沿研究成果。点击文末“阅读全文“可免费获取所有论文全文。