电感,从器件选型到可靠性提升

百科   2025-02-06 22:31   浙江  


第一部分 电感的定义和原理

电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器、动态电抗器。

简单的说:通直流,阻碍交流。




1、电感的作用

通直流阻交流这是简单的说法,对交流信号进行隔离,滤波或与电容器,电阻器等组成谐振电路。

调谐与选频电感的作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是LC回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f=f0的交流信号),所以LC谐振电路具有选择频率的作用,能将某一频率f的交流信号选择出来。

磁环电感的作用:磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。在图中,上面为一体式磁环,下面为带安装夹的磁环。磁环在不同的频率下有不同的阻抗特牲。一般在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。可见电感的作用如此之大,大家都知道,信号频率越高,越容易辐射出去,而一般的信号线都是没有屏蔽层的,这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在原来传输的信号上,甚至会改变原来传输的有用信号,严重干扰电子设备的正常工作,因此降低电子设备的电磁干扰(EM)已经是必须考虑的问题。在磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且成本低廉。

电感的作用还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等重要的作用。


我们通常所说的电感指的是电感器件,它是用绝缘导线(例如漆包线,沙包线等)绕制而成的电磁感应元件。

       在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感。

      电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。



2、电感的分类:

按电感形式 分类:固定电感、可变电感。

按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

按工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。

  电感按电感的作用可分为振荡电感,校正电感,显像管偏转电感,阻流电感,滤波电感,隔离电感,被偿电感等.

  振荡电感又分为电视机行振荡线圈,东西枕形校正线圈等.

  显像管偏转电感分为行偏转线圈和场偏转线圈.

  阻流电感(也称阻流圈)分为高频阻流圈,低频阻流圈,电子镇流器用阻流圈,电视机行频阻流圈和电视机场频阻流圈等.

  滤波电感分为电源(工频)滤波电感和高频滤波电感等.

按绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。

按工作频率 分类:高频电感,中频电感和低频电感.

空心电感,磁心电感和铜心电感一般为中频或高频电感,而铁心电感多数为低频电感.

按结构特点 分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。

  电感按其结构的不同可分为线绕式电感和非线绕式电感(多层片状,印刷电感等),还可分为固定式电感和可调式电感.

固定式电感又分为空心电子表感器,磁心电感,铁心电感等,根据其结构外形和引脚方式还可分为立式同向引脚电感,卧式轴向引脚电感,大中型电感,小巧玲珑型电感和片状电感等.

  可调式电感又分为磁心可调电感,铜心可调电感,滑动接点可调电感,串联互感可调电感和多抽头可调电感.



3、电感的符号

电感方向性:无方向


电感在电路中的基本作用:滤波、振荡、延迟、陷波等,形象说法:“通直流,阻交流”

在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。

由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t成正比,这关系也可用下式表示:,即U=LdI/dt只要电感L足够大,即使整流输出电压低到为0,电感中仍有正向电流,并使负载上保持一定的正向电压。

   电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li2 。可见,线圈电感量越大,流过越大,储存的电能也就越多。

 检查电感好坏方法:用电感测量仪测量其电感量;用万用表测量其通断,理想的电感电阻很小,近乎为零。


4、电感的材质及工艺

       电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心等组成。

1)骨架:泛指绕制线圈的支架。通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。小型电感器一般不使用骨架,而是直接将漆包线绕在磁心上。空心电感器不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再  脱去模具,并将线圈各圈之间拉开一定距离。


2)绕组:指具有规定功能的一组线圈,有单层和多层之分。单层有密绕和间绕两种形式;多层有分层平绕、乱绕、蜂  房式绕法等多种。

3)磁心:一般采用镍锌铁氧体或锰锌铁氧体等材料,它有“工”字形、柱形、帽形、“E”形、罐形等多种形状。

铁心:主要有硅钢片、坡莫合金等,其外形多为“E”型。



4)屏蔽罩:用于为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。

5)封装材料:有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线圈和磁心等密封起来。封装材料采用塑料或环氧树脂等。





第二部分 电感选用规范

1 电感器选用基本原则

1.1 电感器基本规格参数

电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容, 则从电感的等效电路可以看出在某一频率后所呈现的电容特性。

电感的主要特性参数

1)电感量:也称自感系数,是表示电感器产生自感应能力的一个物理量。

电感量的大小,主要取决于线圈的圈数、绕制方式、有无磁心及磁心的材料等等。通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。有磁心的线圈比无磁心的线圈电感量大;磁心导磁率越大的线圈,电感量也越大。


应用的工作频率越高电感的尺寸可以越小


同样的阻抗值,频率越高,感值越小

感值小,圈数可减小,电感的尺寸就可以做小

感值小,材质的导磁率亦不用太高

(材质的导磁率越高,越不适合在高频工作)


2)允许偏差:指电感上标称的电感量与实际电感的允许误差值。一般用于振荡或滤波等电路中的电感要求精度较高, 允许偏差为±0.2%~±0.5%;而用于耦合、高频阻流等线圈的精度要求不高;允许偏差为±10%~15%。


3)固有频率:电感的等效电路实际上是电感与电容的并联谐振电路,其震荡频率

f0=   即是固有频率。

也定义为感抗和容抗相等时对应的自谐振频率。使用电感线圈时,为保障线圈的电感量稳定,应使线 圈的工作频率远低于固有频率。


4)分布电容:指线圈的匝与匝之间、线圈与磁心之间存在的电容。电感的分布电容越小,其稳定性越好。 

减小分布电容的方法:

1)如果磁性是导体,用介电常数低的材料

2)起始端与终止端远离(夹角>40°)

3)尽量单层绕制,并增加匝间距离

4)多层绕制时,采用渐进方式绕,避免来回绕制


5)直流电阻Rdc:指直流状态下测量器件的电阻值为直流电阻,表征器件内部线圈的质量状况。


6)阻抗Z:表征的是给定频率下元件对流经其本身的交流电流的总抵抗能力。


7)品质因数:也称Q值,是衡量电感质量的主要参数。它是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。


  电感器的Q值越高,其损耗越小,效率越高。在实际当中,Q不仅只与线圈的 直流电阻有关,还包括线圈骨架的介质损耗,铁芯和屏蔽的损耗以及在高频条件下工作时的趋肤效应等因素有关,提高线圈的Q值,并不是一件很容易的事情。  


实际电感的应用选择必须同时兼顾较小的电感量波动与较高的Q值。



8)额定电流Ir:指电感正常工作时反允许通过的最大电流。若工作电流超过额定电流,则电感器就会因发热而使性能参数发生改变,甚至还会因过流而烧毁。

功率电感器的额定电流有两种:

在DC-DC转换器中,电感器是仅次于IC的核心元件。通过选择恰当的电感器,能够获得较高的转换效率。在选择电感器时所使用的主要参数有电感值、额定电流、交流电阻、直流电阻等,在这些参数中还包括功率电感器特有的概念。例如,功率电感器的额定电流有两种,它们之间的差异是什么呢?

为了回答这样的疑问,我们在这里对功率电感器的额定电流进行说明。

存在两种额定电流的原因  

功率电感器的额定电流有"基于自我温度上升的额定电流"和"基于电感值的变化率的额定电流"两种决定方法,分别具有重要的意义。"基于自我温度上升的额定电流"是以元件的发热量为指标的额定电流规定,超出该范围使用时可能会导致元件破损及组件故障。

与此同时,"基于电感值的变化率的额定电流"是以电感值的下降程度为指标的额定电流规定,超出该范围使用时可能会由于纹波电流的增加而导致IC控制不稳定。此外,根据电感器的磁路构造的不同,磁饱和的倾向(即电感值的下降倾向)有所不同。图1是表示不同磁路构造所导致的电感值的变化的示意图。对于开磁路类型,随着直流电流的增加,到规定电流值为止呈现比较平坦的电感值,但以规定电流值为境界电感值急剧下降。相反,闭磁路类型随着直流电流的增加,透磁率的数值逐渐减少,因此电感值缓慢下降。

             


功率电感规格书中对额定电流参数仅注明介质的饱和电流Isat值。

小常识:Isat与rms的区别

Isat与Irms是我们工程人员常常会碰到的技术术语,但因有些客户的问题,时常将两者混淆,造成工程技术上的错误。Isat与Irms两者分别表示什么,中文又是指什么? Isat与Irms两者如何定义,它们与那些因素有关?我们在电感设计时,如何定义?

Isat:指磁介质的饱和电流,在下图B-H曲线中,是指磁介质达到Bm对应的Hm所需的DC电流量的大小,对于电感,即电感下降到一定比例后的电流大小,如SRI1207-4R7M产品,电感下跌20%的电流为8.4A,则Isat=8.4A。Isat计算公式如下:

设截面积为S、长为l,磁导率为μ的铁环上,绕以紧密的线圈N匝,线圈中通过的电流为I。則依磁路定律:

Hl/0.4π=NI=0.7958Hl

对于同一材质及呎吋的铁芯Hl依B-H曲线进行变化,但在同一斜率下,Hl是不变的,因此:

N1*I1=Hl/0.4π=N2*I2

即:

N1/N2=I2/I1

             

Irms:指电感产品的应用额定电流,也称为温升电流,即产品应用时,表面达到一定温度时所对应的DC电流。


以下是以2520系列中的4.7uH叠层功率电感为例对比说明业界目前对电感器额定电流Irat、饱和电流Isat以及温升电流Irms标识状况。

叠层功率电感(铁氧体大电流电感)参数比对表

             

现状会误导工程师选型,产生隐患;


1.2 电感器选用注意事项

目前有相当部分叠层功率电感生产厂家对其产品额定电流规格都是沿用传统信号滤波处理用叠层电感额定电流标准来定义,其根据电感的温升电流值来定义其额定工作电流。这种情况下产品设计工程师往往会按照传统功率电感选型经验并根据供应商电感规格书上定义的额定电流值来衡量其实际电路中的额定工作电流,这样一来很可能会导致因电感饱和电流低于电路的实际工作电流,会存在如下隐患:

A). 电感实际工作时因电流过大导致饱和,引起电感量下降幅度过大造成电流纹波超出后级电路最大允许规格范围造成电路干扰,从而无法正常工作甚至损坏;

B).电路中实际工作电流超过电感的饱和电流有可能会因电感饱和电感量下降产生机械或电子噪音;

C).电路中实际工作电流超过电感的饱和电流会导致因电感饱和,其电感量下降引起电源带负载时输出电压&电流不稳定,造成其它单元电路系统死机等不稳定异常情形;

D).电感额定电流(包括饱和和温升电流)选择余量不足会导致其工作时表面温度过高、整机效率降低、加速电感本身或整机老化使其寿命缩短。


2、电感失效分析

电感器失效模式:电感量和其他性能的超差、开路、短路


模压绕线片式电感失效机理:

1.磁芯在加工过程中产生的机械应力较大,未得到释放

2.磁芯内有杂质或空洞磁芯材料本身不均匀,影响磁芯的磁场状况,使磁芯的磁导率发生了偏差;

3.由于烧结后产生的烧结裂纹;

4.铜线与铜带浸焊连接时,线圈部分溅到锡液,融化了漆包线的绝缘层,造成短路;

5.铜线纤细,在与铜带连接时,造成假焊,开路失效

1、耐焊性

低频片感经回流焊后感量上升   <  20

由于回流焊的温度超过了低频片感材料的居里温度,出现退磁现象。片感退磁后,片感材料的磁导率恢复到最大值,感量上升。一般要求的控制范围是片感耐焊接热后,感量上升幅度小于20%。

耐焊性可能造成的问题是有时小批量手工焊时,电路性能全部合格(此时片感未整体加热,感量上升小)。但大批量贴片时,发现有部分电路性能下降。这可能是由于过回流焊后,片感感量会上升,影响了线路的性能。在对片感感量精度要求较严格的地方(如信号接收发射电路),应加大对片感耐焊性的关注。

检测方法:先测量片感在常温时的感量值,再将片感浸入熔化的焊锡罐里10秒钟左右,取出。待片感彻底冷却后,测量片感新的感量值。感量增大的百分比既为该片感的耐焊性大小


2、可焊性

电镀简介

        当达到回流焊的温度时,金属银(Ag)会跟金属锡(Sn)反应形成共熔物,因此不能在片感的银端头上直接镀锡。而是在银端头上先镀镍(2um 左右) ,形成隔绝层,然后再镀锡(4-8um )。

可焊性检测

        将待检测的片感的端头用酒精清洗干净,将片感在熔化的焊锡罐中浸入4秒钟左右,取出。如果片感端头的焊锡覆盖率达到90%以上,则可焊性合格。

可焊性不良

1)端头氧化:当片感受高温、潮湿、化学品、氧化性气体(SO2、NO2等)的影响, 或保存时间过长,造成片感端头上的金属Sn氧化成SnO2,片感端头变暗。由于SnO2不和Sn、 Ag、Cu等生成共熔物,导致片感可焊性下降。片感产品保质期:半年。如果片感端头被污染,比如油性物质,溶剂等,也会造成可焊性下降

2)镀镍层太薄,吃银:如果镀镍时,镍层太薄不能起隔离作用。回流焊时,片感端头上的Sn和自身的Ag首先反应,而影响了片感端头上的Sn和焊盘上的焊膏共熔,造成吃银现象,片感的可焊性下降。

判断方法:将片感浸入熔化的焊锡罐中几秒钟,取出。如发现端头出现坑洼情况,甚至出现瓷体外露,则可判断是出现吃银现象的。



3、焊接不良

内应力    

如果片感在制作过程中产生了较大的内部应力,且未采取措施消除应力,在回流焊过程中,贴好的片感会因为内应力的影响产生立片,俗称立碑效应。


判断片感是否存在较大的内应力,可采取一个较简便的方法:

     取几百只的片感,放入一般的烤箱或低温炉中,升温至230℃左右,保温,观察炉内情况。如听见噼噼叭叭的响声,甚至有片子跳起来的声音,说明产品有较大的内应力。

元件变形

  如果片感产品有弯曲变形,焊接时会有放大效应。

焊接不良、虚焊


焊接正常



           焊盘设计不当


a.焊盘两端应对称设计,避免大小不一,否则两端的熔融时间和润湿力会不同

b.焊合的长度在0.3mm以上(即片感的金属端头和焊盘的重合长度)

c.焊盘余地的长度尽量小,一般不超过0.5mm。

d.焊盘的本身宽度不宜太宽,其合理宽度和MLCI宽度相比,不宜超过0.25mm


贴片不良

        当贴片时,由于焊垫的不平或焊膏的滑动,造成片感偏移了θ角。由于焊垫熔融时产生的润湿力,可能形成以上三种情况,其中自行归正为主,但有时会出现拉的更斜,或者单点拉正的情况,片感被拉到一个焊盘上,甚至被拉起来,斜立或直立(立碑现象)。目前带θ角偏移视觉检测的贴片机可减少此类失效的发生





焊接温度

       回流焊机的焊接温度曲线须根据焊料的要求设定,应该尽量保证片感两端的焊料同时熔融,以避免两端产生润湿力的时间不同,导致片感在焊接过程中出现移位。如出现焊接不良,可先确认一下,回流焊机温度是否出现异常,或者焊料有所变更。


电感在急冷、急热或局部加热的情况下易破损,因此焊接时应特别注意焊接温度的控制,同时尽可能缩短焊接接触时间


回流焊推荐温度曲线


手工焊推荐温度曲线



4、上机开路

          虚焊、焊接接触不良               

从线路板上取下片感测试,片感性能是否正常


电流烧穿                

如选取的片感,磁珠的额定电流较小,或电路中存在大的冲击电流会造成电流烧穿,片感或磁珠   失效,导致电路开路。从线路板上取下片感测试,片感失效,有时有烧坏的痕迹。如果出现电流烧穿,失效的产品数量会较多,同批次中失效产品一般达到百分级以上。



焊接开路                      

回流焊时急冷急热,使片感内部产生应力,导致有极少部分的内部存在开路隐患的片感的缺陷变大,造成片感开路。从线路板上取下片感测试,片感失效。如果出现焊接开路,失效的产品数量一般较少,同批次中失效产品一般小于千分级。


5、磁体破损


磁体强度

片感烧结不好或其它原因,造成瓷体强度不够,脆性大,在贴片时,或产品受外力冲击造成瓷体破损        

附着力               

      如果片感端头银层的附着力差,回流焊时,片感急冷急热,热胀冷缩产生应力,以及瓷体受外力冲击,均有可能会造成片感端头和瓷体分离、脱落;或者焊盘太大,回流焊时,焊膏熔融和端头反应时产生的润湿力大于端头附着力,造成端头破坏。

片感过烧或生烧,或者制造过程中,内部产生微裂纹。回流焊时急冷急热,使片感内部产生应力,出现晶裂,或微裂纹扩大,造成瓷体破损



2、电感选型范例:


我们需要重点考虑的电感的参数:

1、等效电阻:影响效率

2、电感值:影响纹波电流


计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。


从下图可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。


纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。



在开关管开关的过程中,电感上电流的变化。

在开关管开关的过程中,电感的欧姆定律应用,计算:

输出的电流纹波,与电感值成反比,与开关频率成反比。

由上面公式可知,电感的感值越大,输出纹波电流就越小。但带来问题是动态响应(response time)变慢。如果电感感值较小,如果想输出电压的纹波也小,就需要提高开关频率,这样MOS管上的开关损耗就增加,电路效率下降。


第四部分  实际电路设计

BUCK型开关电源规格需求:5V0~24V0→1V~5V0 输出电流:2A

电源控制器备选型号:MP4420A(A表示:CCM模式,H表示:轻载降频模式)

PIN2PIN兼容:MPQ4420A-DJ(工业级),MPQ4420A-DJ-A(汽车级)

厂家:MPS

电源输出:3.3V

电源范围要求:5%

电源纹波要求:2%   0.066V

开关频率:410kHz(320~500kHz)

占空比:12V转3V3:    27.5%

我们选定10uH电感之后,即确定了纹波电流:


纹波电流  =  (12V-3.3V)*0.275/(0.00001*320000)=0.75A

我们选定的陶瓷电容的ESR:


含义即为电容器所能耐受纹波电流/电压值。它们和ESR 之间的关系密切,可以用下面的式子表示:Urms = Irms × R 式中,Urms 表示纹波电压 Irms 表示纹波电流 R 表示电容的 ESR。


由上可见,当纹波电流增大的时候,即使在 ESR 保持不变的情况下,涟波电压也会成倍提高。换言之,当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低 ESR 值的原因。叠加入纹波电流后,由于电容内部的等效串连电阻(ESR)引起发热,从而影响到电容器的使用寿命。一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。


所以,对于输出电容来说,耐压的要求和容量可以适当的降低一点。ESR的要求则高一点,因为这里要保证的是足够的电流通过量。但这里要注意的是ESR并不是越低越好,低ESR电容会引起开关电路振荡。而消振电路复杂同时会导致成本的增加。板卡设计中,这里一般有一个参考值,此作为元件选用参数,避免消振电路而导致成本的增加。

我们把ESR设置为1欧姆:

我们把ESR设置为10mΩ:

幅度明显减小


如果我们用2个1Ω,100uF的电容,则会发现纹波电压进一步减小。一方面是电容在开关频率点的阻抗通过并联进一步减小,另一方面,ESR其实也是等效于并联。本质是ESR与电容串联后并联,导致输出电容在开关频率点上的阻抗明显减小。

ESR、电容的串并联公式等同于电阻的串并联公式。


根据陶瓷电容的datasheet

在410kHz附近,其ESR大约是2mΩ

所以纹波电压=0.75A*2mΩ=1.5mV

远小于66mV的纹波要求。

所以其实我们设计的时候,考虑到电感值的精度范围、温度漂移。所以,根据我们的成本、PCB空间的要求,还可以适当减小我们电感值的大小。但是,减小时,还需要考虑电感值最差的情况,对纹波进行评估。


第五部分 电感降额

电感元件的热点温度额定值与线圈线组的绝缘性能、工作电流、瞬态初始电流及介质耐压有关。

注:

1) THS 为额定热点温度。
2)只适用于扼流圈。

按照我们的设计需求,如果我们的瞬态电流为2A,则需要额定电流为2A/0.9=2.22A,我们需要选择额定电流在2.5A~3A的电感作为输出。Isat和Irms选择小的那个作为额定电流。

第六部分 电感选型

我们选择Irms和Isat都大于2.5A的,DCR相对小一点的10uH电感,最后考虑成本和体积。



共模电感(扼流圈)选型

1     共模电感原理

在介绍共模电感之前先介绍扼流圈,扼流圈是一种用来减弱电路里面高频电流的低阻抗线圈。为了提高其电感扼流圈通常有一软磁材料制的核心。共模扼流圈有多个同样的线圈,电流在这些线圈里反向流,因此在扼流圈的芯里磁场抵消。共模扼流圈常被用来压抑干扰辐射,因为这样的干扰电流在不同的线圈里反向,提高系统的EMC。对于这样的电流共模扼流圈的电感非常高。共模电感的电路图如图1所示。


共模信号和差模信号只是一个相对量,共模信号又称共模噪声或者称对地噪声,指两根线分别对地的噪声,对于开关电源的输入滤波器而言,是零线和火线分别对大地的电信号。虽然零线和火线都没有直接和大地相连,但是零线和火线可以分别通过电路板上的寄生电容或者杂散电容又或者寄生电感等来和大地相连。差模信号是指两根线直接的信号差值也可以称之为电视差。

假设有两个信号V1、V2

共模信号就为(V1+V2)/2

差模信号就为:对于V1 (V1-V2)/2;对于V2  -(V1-V2)/2

共模信号特点:幅度相等、相位相同的信号。

差模信号特点:幅度相等、相位相反的信号。

如图2所示为差模信号和共模信号的示意图。


图2差模信号和共模信号示意图


2  差模噪声和共模噪声主要来源

对于开关电源而言,如果整流桥后的储能滤波大电容为理想电容,即等效串联电阻为零(忽略所有电容寄生参数),则输入到电源的所有可能的差模噪声源都会被该电容完全旁路或解耦,可是大容量电容的等效串联电阻并非为零。因此,输入电容的等效串联电阻是从差模噪声发生器看进去的阻抗Zdm的主要部分。输入电容除了承受从电源线流入的工作电流外,还要提供开关管所需的高频脉冲电流,但无论如何,电流流经电阻必然产生压降,如电容的等效串联电阻,所以输入滤波电容两端会出现高频电压纹波,高频高压纹波就是来自于差模电流。它基本上是一个电压源(由等效串联电阻导致的)。理论上,整流桥导通时,该高频纹波噪声应该仅出现在整流桥输入侧。事实上,整流桥关断时,噪声会通过整流桥二极管的寄生电容泄露。

高频电流流入机壳有许多偶然的路径。当开关电源中的主开关管的漏极高低跳变时,电流流经开关管与散热器之间的寄生电容(散热器连接至外壳或者散热器就是外壳)。在交流电网电流保持整流桥导通时,注入机壳的噪声遭遇几乎相等的阻抗,因此等量流入零线和火线。因此,这是纯共模噪声。


   3   共模电感如何抑制共模信号

目前已经知道共模信号是两个幅度相等、相位相同的信号,共模信号一般来自电网,共模信号会影响电路板的正常工作,也会以电磁波的形式干扰周围环境。

既然是用电感来抑制共模信号,那么这肯定和磁场相关。先来介绍通电螺线感,产生的磁场的方向(对于项目应用而言,有些场合比如抑制共模信号而言,不太需要定量的计算,电感产生的磁场以及磁通量的大小,感兴趣的童鞋,这里推荐一本书可以参考,<<开关电源中磁性元器件>>赵修科老师)。对于通电螺线管的磁场方向判断方法为,右手握住螺管,四指指向电流方向,则拇指指向就是磁场方向。接下来介绍一个重要的名词,即磁通。垂直通过一个截面的磁力线总量称为该截面的磁通量,简称磁通。磁力线是通电螺线管产生的,是实际存在的,只是看不见也摸不着,磁力线是一个闭和的回路,对于通电螺线管,磁力线都要经过螺线管内部,磁力线是与磁感应强度B成正比的。如图3所示为通电螺线管产生磁力线的示意图。


图3 螺线管磁力线

如图4所示为,穿过某一截面的磁通

图4 穿过截面的磁通

磁通量用F表示,是一个标量,单位为韦伯,代号Wb。磁通量和磁感应强度B以及截面积A的关系为:

                                   F=BA

从关系式可以看出,穿过横截面的磁力线越多,磁通量就越大。对于绕在磁芯上的线圈,在其上通电流i,则线圈的电感L可以表示为:

                               L=NF/i

N为线圈匝数。

到此为止,通过上述的简要概述,可以知道,绕在磁芯上的线圈在匝数和电流不变时,磁芯中穿过的磁力线越多,那么磁通量就越大,则相对应的电感量也越大。电感天生的作用就是阻止流过其上电流的变化,其实质是阻止其磁通量的变化。这就是利用共模电感来抑制共模电流的基本原理。

    如图5所示为,共模电流在共模电感上产生的磁感应强度,电流I1产生的磁感应强度为B1,电流I2产生的磁感应强度为B2,两条黄色箭头分别表示电流I1和I2在铁氧体中产生的磁力线,可以看出电流I1和I2产生的磁力线是相加的,故磁通也是相加的,那么电感量就是相加的,电感量越大,对电流的抑制能力就越强。

图5共模电流在共模电感上的磁通分布


对于共模电感如何抑制共模电流用一句话可以解释,即共模电感上流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用。

当两个线圈流过差模电流时,铁氧体磁环中的磁力线相反,导致磁通相互抵消,几乎没有电感量,所以差模信号可以基本无衰减的通过(考虑到电感本身具有一定的电阻)。所以不仅对于开关电源的输入滤波器加共模电感,在走差分信号线时也可以加上共模电感来抑制共模电流,以防止电路误触发等现象。


4共模电感选取

根据共模电感的额定电流、直流电阻以及额定频率下阻抗值要求,可以按步骤进行设计:

1  根据阻抗值计算最小电感值

2  选择共模电感磁芯材料以及磁芯尺寸

3  确定线圈匝数

4  选择导线


共模电感最小电感值计算公式:


Xl为频率为f时的阻抗值


扼流圈电感值是用负载(单位:Ohms)除以信号开始衰减时的角频率或以上频率。例如,在50Ω的负载中,当频率达到 4000 Hz 或以上时信号开始衰减,则需要使用 1.99 mH(50/2π×4000))的电感。其相应的共模滤波器构造,如下图6所示:

选择所需滤波的频段,共模阻抗越大越好,因此在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。

电感量计算出来后和普通设计电感一样,在此就不详细展开。

自己在绕制电感时要注意些事项,

    1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。


    2)当线圈流过瞬时大电流时,磁芯不要出现饱和。


    3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。


4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力

共模电感磁芯的选取磁芯时,形状尺寸、适用频段、温升以及价格都要考虑,常用的磁芯为U型、E型和环形。

相对而言,环形磁芯比较便宜,因为环形只有一个就可制作。而其他形状的磁芯必须有一对才能为共模电感所用,且在成型时,考虑两磁芯的配对问题,还须增加研磨工序才能得到较高的磁导率,对于环形磁芯却不需如此;与其它形状磁芯相比环形磁芯有较高的有效磁导率,因为两配对磁芯在装配时,无论怎样作业都不可消除气隙的现象,故有效磁导率比单一封闭形磁芯要低。但环形磁芯绕线成本较高,因其他形状磁芯有一配套线架在使用,绕线可以机器作业,而环形磁芯只可以手工作业或机器(速度较低)作业;且磁环孔径小,机器难以穿线,需要人工去绕,费时费力,加工成本高,效率低;安装不便,若是加底座,则成本会上升。综合性能比起来,磁环性能较好,价格也较高。因为成本的因素,磁环大多用在大功率的电源上。当然因为体积小,对体积有要求的小功率电源,可以采用磁环磁芯。对于主要作用是滤除低频噪声的共模电感,应当选用高磁导率的锰锌铁氧体磁芯;相反,应该选用适用于高频的镍锌铁氧体磁芯或磁粉芯磁芯。通常适用于高频的磁芯,因其具有分布式气隙,故磁导率相对较低,二者不可兼得。不过,与普通电感器不同的是,共模电感的作用是对噪声信号形成较大的插入损耗,以减小噪声干扰。锰锌铁氧体在高频时,虽然其有效磁导率很小,但磁芯损耗随频率增加而增大,对高频噪声有较大的阻碍作用,所以也能减弱高频干扰,只是效果相对较差。然而,较大的磁芯损耗会导致磁芯发热,而损耗较小的磁芯价格也较高。







第三部分 应用与案例

1 电感应用注意事项

1.1电感和磁珠的联系与区别

  1)电感是储能元件,而磁珠是能量转换(消耗)器件

  2)电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策

  3)磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。两者都可用于处理EMC、EMI问题。

    EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。前者用磁珠,后者用电感。

  4)磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR

    SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ。

  5)电感一般用于电路的匹配和信号质量的控制上。一般地的连接和电源的连接。

    在模拟地和数字地结合的地方用磁珠。对信号线也采用磁珠。

    磁珠的大小(确切的说应该是磁珠的特性曲线)取决于需要磁珠吸收的干扰波的频率。磁珠就是阻高频,对直流电阻低,对高频电阻高。比如1000R@100Mhz就是说对100M频率的信号有1000欧姆的电阻。因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的datasheet上一般会附有频率和阻抗的特性曲线图。一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的Impedance为600欧姆。

   

2 电感设计原则

电感不饱和(感值下降不超过合理范围)

  由磁滞回线图可以看出,H加大时,B值也同时增加,但H加大到一定程度后,B值的增加就变得越来越缓慢,直至B值不再变化(u值越来越小,直至为零),这时磁性材料便饱和了。通常电路中使用的电感都不希望电感饱和(特殊应用除外),其工作曲线应在饱和曲线以内,Hdc称为直流磁场强度或直流工作点


             


对于储能滤波电感,由于需要承受一定的直流电流(低频电流相对与高频开关电流也可视为直流),也就是存在直流工作点Hdc不为零。磁芯需加气隙才能承受较大的直流磁通,如下图,所以该类电感通常选用铁粉芯做磁芯(有分散气隙)。

             

由于磁芯加了分布气隙,其饱和过程就不是一个突变而是一个渐变的过程,所以电感的不饱和问题就转化为电感感值在直流量下的合理下降问题。

对于PFC、BOOST、BUCK以及DC-DC电感,电感的取值通常由设计要求最大纹波电流(Ripple Current)来决定(通常设计指标是最大纹波电流百分比)。

其中,对于BUCK和DC-DC电感,其直流工作点(IAVG)相对恒定,如图

             


             

△Imax 是纹波电流峰峰值

             

这是在最大直流工作点时,所需的电感最小感值。

电感初始感值与最大直流工作点下感值的关系

             

可从磁芯厂商提供的图表或计算公式得到。通常,无论如何设计,在最大直流工作点处,都不应低于初始磁导率的30%,否则将导致感值摆动太大而对控制器产生不利影响。

对于PFC、BOOST电感,其直流工作点是50Hz/60Hz的工频信号,并不固定,如下图。

             

此时,最大纹波电流百分比定义为最大纹波电流与额定输入电压下的电感电流峰值之比。

             

注意,BOOST拓扑的最大纹波电流发生在输入瞬时电压为BUS电压一半处,此时占空比为0.5。

             


,注意,此处的直流工作点是输入瞬时电压为BUS电压一半时对应的输入瞬时电流。

同时,在最恶劣条件的最大直流工作点下(低压满载输入电流的峰值),

也都不应低于初始磁导率的30%。


对于INV电感,电感的取值通常看控制器能否可靠限流来决定。

由于INV电感需承受RCD等非线性冲击负载,所以UPS通常有波峰因数比大于3:1的要求,考虑实际逆变限流会稍大于3:1,通常取到4:1,所以,INV电感的最大直流工作点可以设为4:1(4倍于额定负载下的电感电流有效值)。当然,若波峰因数规格要求改变,需要做相应调整。

最大直流工作点下,μdc% 不应低于初始磁导率的30%,否则很可能造成限流不可靠而损坏INV开关管。

感值确定后,选择恰当的磁芯,查规格可得其AL值,用以下公式就可算出匝数。

             

电感损耗导致的温升在允许的范围内(考虑使用寿命)

电感主要由磁芯、线圈组成,所以其温度要求也由这两方面的限制构成。


磁芯(Core):

储能电感的磁芯有铁粉芯、铁硅铝粉芯、铁氧体等构成,目前使用最多的是铁粉芯。铁粉芯存在高温老化导致失效的问题,其失效机理可解释如下:铁粉芯是由铁磁性粉粒与绝缘介质混合压制而成,绝缘介质通常是高分子聚合物-树脂类构成,其在高温下绝缘性能会慢慢劣化,铁磁材料间的电阻会越来越小,从而磁芯的涡流损耗越来越大,大的损耗导致更高的温升,这样便形成了正反馈,这称为热跑脱效应(Thermal Run away)。铁粉芯磁芯的寿命便是由热跑脱效应决定的,其与温度、工作频率和磁通密度都有关系。目前公司使用较多的MicroMetals公司的铁粉芯存在上述问题。但也需提醒的是,如绝缘介质无高温劣化问题,磁芯便不会有热跑脱效应,这与各公司的使用的材料和工艺有关,并不绝对。

磁芯的温升与磁芯损耗直接相关,如前所述,磁芯损耗主要由磁滞损耗和涡流损耗构成,对于粉芯类磁芯,由于磁材料间绝缘阻抗很大,涡流损耗几乎可以忽略不计(但热跑脱效应是由于涡流损耗越来越大引起)。磁滞损耗只与频率和交流磁通密度(磁滞回线面积)有关,与其直流工作点磁通密度关系不大,以下公式是MicroMetals公司铁粉芯磁芯损耗计算的经验公式:

             

其中为开关工作频率,B(单位Gauss)为一个开关周期内交流磁通密度的峰值,其为个开关周期内交流磁通密度峰峰值的一半()。为常数,与材质有关,常用材质常数见下表。

Materials

a

b

c

d

-8

1.9×10e9

2.0×10e8

9.0×10e5

2.5×10e-14

-26

1.0×10e9

1.1×10e8

1.9×10e6

1.9×10e-13

-34

1.1×10e9

3.3×10e7

2.5×10e6

7.7×10e-14

-35

3.7×10e8

2.2×10e7

2.2×10e6

1.×10e-13

对于BUCK和DC-DC电感,稳态工作时,脉宽也基本稳定,所以B值很容易确定。但对于PFC、BOOST和INV电感,其脉宽一直是变动的,B值也一直是变动的,所以在一个工频周期内的瞬时损耗也是不定的,这时的损耗应以一个工频周期的平均值

             

来衡量。

我们知道最大电流纹波发生在输入(或输出)是输出(或输入)电压一半的时候得到,其实此时也是瞬时交流磁通密度达到最大的时候,称之为,所以此时的瞬时损耗也达到最大。经过理论计算与实践检验,发现最恶劣条件下

             

有如下关系:

             

其中K与电路拓扑以及输出电压调制比

             

有关。下图是半桥和全桥逆变拓扑的电压调整率与K的关系。

             

平均功率与峰值功率比和电压调整率关系图


目前BUS电压介于340V~400V间,所以电压调整率介于0.7~0.9间,由图可看出K介于0.35~0.6范围。


线圈(Coil):

线圈的损耗是电流在导线电阻上产生的。电感中导线的电流通常包含工频或直流成分的低频电流和开关频率的高频电流。

             

磁损与铜损的比例:

      磁芯的材料(除硅钢片较好外)通常是热的不良导体,热阻较高,而铜线是热的良导体,热阻很小。再加上通常用的环形磁芯都是线圈包住铁芯(内铁式)。因此线圈上的热量可以较磁芯上的热量更好地散发出去。为保证铁芯温度可以受控制,

             

电感的工艺要求可以达成

电感理论设计完成后,就需要考虑工程实现的问题了。

需考虑的工艺问题有:

1)电感线圈是否可绕得下

             

2)线圈的绕法

电感线圈的绕法主要有循环式、往复式、渐进式三种。

             

循环式绕法是导线一直沿同一个方向绕制,多层导线之间相互叠压。

优点:可机器自动绕制,绕线系数高。

缺点:绕线起始端与结束端几乎没有间距,层间压差大,高压应用时易导致因压差过高而导线绝缘失效。

往复式绕法是导线绕完一层后反方向再绕下一层后,多层导线之间相互叠压。起始端与结束端有间距分开。

优点:可机器自动绕制;起始端与结束端有间距分开,可部分解决压差大导致的导线绝缘失效问题。

缺点:绕线起始端与结束端有间距分开,绕线系数不高。

渐进式绕法是导线由起始端沿一个方向绕到结束端,导线不分层。

优点:导线间压差小,绕线起始端与结束端有间距分开,适合高压应用。

缺点:需手工绕制,效率低,成本高;绕线零乱,绕线系数低。

实际应用时,需根据电感工作的电压来决定选用何种绕法,但由于渐进式绕法的效率低、成本高,非不得已不要选用。


误差的确定

由于磁芯材料的磁参数均有较大的分布误差,批次不同或厂商不同则差异可能更大,通常为±15%~25%,所以设计时需考虑在参数偏差时所造成的影响


我们知道电感磁芯是很多电子产品中都会用到的产品,比如:手机,变压器等等,电子产品在使用过程中都会产生一定的损耗,而电感磁芯也不例外。如果电感磁芯的损耗过大,就会影响电感磁芯的使用寿命。

电感磁芯损耗(主要包括磁滞损耗和涡流损耗两部分)的特性是功率材料的一个最主要的指标,它影响甚至决定了整机的工作效率、温升、可靠性。


什么是电感?

电感是把电能转化为磁能而存储起来的元件,它只阻碍电流的变化,有通电与未通电两种状态,如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。

电感磁芯是由线圈和磁芯以及封装材料组成的,线圈主要起导电作用,即磁芯是由磁导率高的材料组成,把磁场紧密地约束在电感元件周围增大电感。磁芯是由传统的硅钢片,到铁粉, 铁氧体, 铁硅等变化。


电感的损耗

电感的损耗主要来源于磁芯损耗和线圈损耗两个方面,而且这两个方面的损耗量的大小又需要根据其不同电路模式来进行判断。其中,磁芯损耗主要是因为磁芯材料内交替磁场而产生的,它所产生的损耗是操作频率与总磁通摆幅(ΔB)的函数,会大大降低了有效传导损耗。线圈损耗则是因为磁性能量变化所造成的能源耗损,它会在当功率电感电流下降时,降低磁场的强度。


电感磁芯损耗

1、磁滞损耗

磁芯材料磁化时,送到磁场的能量有2部分,一部分转化为势能,即去掉外磁化电流时,磁场能量可以返回电路;而另一部分变为克服摩擦使磁芯发热消耗掉,这就是磁滞损耗。

磁滞回线,如下图:


磁化曲线中阴影部分的面积代表了在一个工作周期内,磁芯在磁化过程中由磁滞现象引起的能量损耗。如上图可知,影响损耗面积大小几个参数是:最大工作磁通密度B、最大磁场强度H、剩磁Br、矫顽力Hc,其中B和H取决于外部的电场条件和磁芯的尺寸参数,而Br和Hc取决于材料特性。电感磁芯每磁化一周期,就要损耗与磁滞回线包围面积成正比的能量,频率越高,损耗功率越大,磁感应摆幅越大,包围面积越大,磁滞损耗越大。

2、涡流损耗

在磁芯线圈中加上交流电压时﹐线圈中流过激励电流﹐激磁安匝产生的全部磁通Φi在磁芯中通过﹐如下图。磁芯本身是导体﹐磁芯截面周围将链合全部磁通Φi而构成单匝的副边线圈。


磁芯中的涡流

根据电磁感应定律可知:U= NdΦ/d t;每一匝的感应电势﹐即磁芯截面最大周边等效一匝感应电势为

因为磁芯材料的电阻率不是无限大﹐绕着磁芯周边有一定的电阻值﹐感应电压产生电流ie即涡流,流过这个电阻,引起ie2R损耗﹐即涡流损耗。

3、剩余损耗

剩余损耗是由于磁化弛豫效应或磁性滞后效应引起的损耗。所谓弛豫是指在磁化或反磁化的过程中,磁化状态并不是随磁化强度的变化而立即变化到它的最终状态,而是需要一个过程,这个‘时间效应’便是引起剩余损耗的原因。它主要是在高频1MHz以上一些驰豫损耗和旋磁共振等,在开关电源几百KHz的电力电子场合剩余损耗比例非常低,可以近似忽略。

选择合适的磁芯,要考虑不同的B-H曲线和频率特性,因为B-H曲线决定了电感的高频损耗,饱和曲线及电感量。因为涡流一方面引起电阻损耗,导致磁材料发热,并引起激磁电流加大,另一方面减少磁芯有效导磁面积。所以尽量选择电阻率高的磁性材料或采用碾轧成带料的形式以减少涡流损耗。因此,铂科新材料NPH-L适用于更高频率、高功率器件的低损耗金属粉芯。如图所示:

磁芯损耗是磁芯材料内交替磁场引致的结果。某一种材料所产生的损耗,是操作频率与总磁通摆幅(ΔB)的函数,从而降低了有效传导损耗。磁芯损耗是由磁芯材料的磁滞、涡流和剩余损耗引起的。所以,磁芯损耗是磁滞损耗、涡流损耗和剩磁损耗的总和。公式如下:

磁滞损耗为磁滞现象产生的功率损耗,正比于磁滞回线包围的面积。当穿过磁芯的磁场发生变化时磁芯内产生涡流,涡流产生的损耗叫做涡流损耗。剩余损耗是除了磁滞损耗和涡流损耗以外其他所有损耗。


这一公式是用于测定磁通密度的峰值,与磁芯损耗曲线并用,应用在正弦波上,在这状态下,磁芯产生—种磁通密度峰与峰之间的摆幅(ΔB),这一摆幅是上述公式所计算出的磁芯损耗磁通密度峰值的两倍,如下图所示:


总结:在总损耗主要是由磁芯损耗而不是铜损耗引起的电感器用途上,可用磁导率较低的磁芯材料改进。



3 电感应用案例


3.1 电感绝缘层破损导致短路问题

【问题现象】

XX设备首次上电出现电感打火短路的问题

【问题根因】

电感绕线出线时操作不规范,导致绝缘漆破损,首次上电时出现打火。

【解决方案】

优化电感立绕制程工艺,增加出线绝缘胶带

【案例点评】

大功率电感需要做好绝缘。



3.2 磁芯材料选择不合理导致电感发烫问题

【问题现象】

XX单板在运行过程中12V转5V的DC-DC开关电源的2.3uH电感发烫,空载达到了56℃,满载接近90℃。该电源的最大输出电流为0.75A,开关频率为500KHz

【问题根因】

对比分析,其它单板上的DC-DC电源也用了这颗电源,开关频率为300KHz。交叉电感,问题跟随单板。

测量电感值,发现电感在100k频率下的电感值为2.13uH,在300KHz频率下的电感值为1.98uH,在500kHz频率下的电感值为1.67uH。与电感厂家确认,问题电感使用的磁芯错误,磁芯材料在500kHz时磁导率下降。

【解决方案】

电感改用正确的磁芯,支持500kHz的频率

【案例点评】

开关电源电路选择电感时需要考虑电感的频率范围


3.3 电感的啸叫

凡是做过开发工作的人员都有这样的经历,测试开关电源或在实验中有听到类似产品打高压不良的漏电声响或高压拉弧的声音不请自来:其声响或大或小,或时有时无;其韵律或深沉或刺耳,或变化无常者皆有。


1、变压器(Transformer)浸漆不良:包括未含浸凡立水(Varnish)。啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越甚之,小功率者则表现不一定明显。一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。(此款产品客户要求较为严格)补充一点,当变压器的设计欠佳也有可能工作时振动产生异响。


2、 PWM IC接地走线失误:通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。

3、光耦(Opto Coupler)工作电流点走线失误:当光耦的工作电流电阻的位置连接在次级滤波电容之前时也会有啸叫的可能,特别是当带载越多时更甚。


4、基准稳压(Regulator)IC TL431的接地线失误:同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断在下一个周期内没有产生令开关管导通的驱动信号或占空比过小;开关管在之后的整个周期内为截止状态,或者导通时间过短;储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音。同时,输出电压波动也会较正常工作增大。当单位时间内间歇性全截止周期数量达到总周期数的一个可观比例时,甚至会令原本工作在超声频段的变压器振动频率降低,进入人耳可闻的频率范围,发出尖锐的高频“啸叫”。此时的开关变压器工作在严重的超载状态,时刻都有烧毁的可能——这就是许多电源烧毁前“惨叫”的由来,相信有些用户曾经有过类似的经历。

5、空载

或者负载很轻时开关管也有可能出现间歇性的全截止周期,开关变压器同样工作在超载状态,同样非常危险。针对此问题,可通过在输出端预置假负载的方法解决,但在一些“节省”的或大功率电源中仍偶有发生。当不带载或者负载太轻时,变压器在工作时所产生的反电势不能很好的被吸收。这样变压器就会耦合很多杂波信号到你的1.2绕组。这个杂波信号包括了许多不同频谱的交流分量。其中也有许多低频波,当低频波与你变压器的固有振荡频率一致时,那么电路就会形成低频自激。变压器的磁芯不会发出声音。我们知道,人的听觉范围是20--20KHZ。所以我们在设计电路时,一般都加上选频回路。以滤除低频成份。从你的原理图来看,你最好是在反馈回路上加一个带通电路,以防止低频自激.或者是将你的开关电源做成固定频率的即可。

6、大功率开关电源短路啸叫

相信大家遇到过这种情况,开关电源在满载后突然将电源短路测试,有时候会听到电源有啸叫的情况;或者是在设置电流保护时,当电流调试到某一段位,会有啸叫,其啸叫的声音抑扬顿挫,甚是烦人,究其原因主要为以下:

当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断,在下一个周期内没有产生令开关管导通的驱动信号或占空比过小;开关管在之后的整个周期内为截止状态,或者导通时间过短;储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会大…… 如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音. 同时,输出电压波动也会较正常工作增大.当单位时间内间歇性全截止周期数量达到总周期数的一个可观比例时,甚至会令原本工作在超声频段的变压器振动频率降低,进入人耳可闻 的频率范围,发出尖锐的高频“哨叫”.此时的开关变压器工作在严重的超载状态,时刻都有烧毁的可能——这就是许多电源烧毁前“惨叫”的由来,相信有些用户曾经有过类似的经历. 空载,或者负载很轻时开关管也有可能出现间歇性的全截止周期,开关变压器同样工作在超载状态,同样非常危险.


针对此问题,可通过在输出端预置假负载的方法解决,但在一些“节省”的或大功率电源中仍偶有发生.当不带载或者负载太轻时,变压器在工作时所产生的反电势不能很好的被吸收.这样变压器就会耦合很多杂波信号到你的1.2绕组.这个杂波信号包括了许多不同频谱的交流分量.其中也有许多低频波,当低频波与你变压器的固有振荡频率一致时,那么电路就会形成低频自激.变压器的磁芯不会发出声音.我们知道,人的听觉范围是20--20KHZ.所以我们在设计电路时,一般都加上选频回路.以滤除低频成份.从你的原理图来看,你最好是在反馈回路上加一个带通电路,以防止低频自激.或者是将你的开关电源做成固定频率的即可。


实例:


我们现在就来分析下此电路关键器件对性能参数的影响,限流电阻R=R110//R111//R112//R113//R114.

该电阻的作用是检测输出电流,当输出电流超过阀值时,将关闭输出电流。根据负载瞬态最大电流的要求来调整限流电阻的取值,使最大输出电流不小于瞬态最大电流。

R115,R116调整输出电压Vo=1.25*(1+R116/R115)。

C112为内部震荡电路的频率调整电容,电容变小,则频率升高,一般情况,输出方波频率等于该震荡频率。频率越高输出纹波越小。

L110电感量越大,则输出纹波越小,纹波的大小还会影响到输出电压调整的灵敏度,纹波越小,灵敏度越高,输出电压越稳定。但是芯片的SE脚将出现杂乱的窄脉冲开关电流波形,L110电感容易啸叫。纹波越大,输出灵敏度越低,输出电压稳定度降低,SE脚出现开关电流频率较稳定,L110电感不会啸叫。

C115的ESR越小,则允许流经电容的纹波电流越大,保证电容使用寿命的同时,纹波电压也越小。同样电容的容量越大,纹波电压也越小。

R117为反馈电阻,把输出方波叠加在锯齿波上,可以降低电压调整灵敏度,稳定输出方波电流,避免电感啸叫。

  稳压电源电路输出的开关电流的频率接近或落入音频范围,或周期性方波群的周期频率接近或落入音频范围。周期性电流经过电感线圈,产生交变磁场,该电感线圈在交变磁场作用下产生振动而发出声音。34063的输出稳压是以PWM方式实现的,芯片的最大占空比的限制以及输出电压,决定了最低输入电压,而芯片的耐压决定了最高输入电压,在电压调整灵敏度适当的情况下,输入电压变高,则输出方波脉宽变窄,即占空比变小,当输入电压高到某个数值时,占空比无法再小,为了继续稳压,不同的芯片有不同的处理方式,有的降低频率,有的则周期性的丢弃一些脉冲。周期性丢弃的脉冲群如果周期频率接近或落入音频范围,就会发生电感啸叫的情况,而如果降频处理后的开关电流的频率接近或落入音频范围,也会引起电感的啸叫。

解决方法


  1. 提高输出开关电流的频率。

  2. 当“输入输出比”较大时,对于会周期性丢弃脉冲的芯片来讲,可调整如上图所示C112,降低频率,来获取更大的占空比调整范围,避免出现周期性的方波群落入音频的范围,从而避免电感的啸叫。

  3. 调整R117反馈电阻,即改变电压调整灵敏度,避免开关电流频率出现接近或落入音频周期范围内的周期性方波群。从而避免电感的啸叫。

  4. 添加C111电容,降低电压调整灵敏度,避免开关电流频率出现接近或落入音频周期范围内的周期性方波群。从而避免电感的啸叫。

  5. 在纹波允许范围内,适当加大纹波幅度,必要的话多加一级滤波。

  6. L110 电感改善工艺,减小振动啸叫,如要求供应商增加浸漆工序等。


《硬件十万个为什么——无源器件篇》

拥有硬十这张Ω卡的同学,可以下载大量《无源器件》相关的规范和案例


已经购买硬十这本书的128元版本的同学,还没激活下载的同学,按照随卡说明,抓紧操作。碰到困难抓紧联系客服。STEAM_HZ


如果你还没有这本书和这张卡的同学,可以点击链接抓紧了解。

↓↓↓↓↓↓↓↓↓

你想要的这本硬件的书!

想了解这本书的更多详情,点击《阅读原文》

硬十
热爱技术,乐于分享
 最新文章