小麦条锈病是威胁全球小麦生产的主要叶部病害。病害严重度是叶片病斑面积占总面积的比例(0-100%),是常用于评估病原体感染程度和植物抗病性的重要表型。传统的目测评估方式耗时费力,易受疲劳影响导致误差和不一致性。因此,亟需开发更准确、高效的评估技术,以减轻研究人员的田间工作负担。
实验结果表明,StripeRustNet模型在叶片分割上实现了98.65%的平均交并比(MIoU),在病斑分割上实现了86.08%的MIoU。能够在复杂背景下对小麦条锈病的叶片图像进行高效分割,并且其自动化量化结果与专家评分的平均相关性超过0.964。
图4 通过100张叶片图像比较三位专家的目测评分与StripeRust-Pocket自动评分在条锈病严重程度上的差异。(a)病害严重程度的分布;(b)成对相关系数的热图;(c)散点图和简单线性回归分析。
武汉理工大学计算机与人工智能学院刘唯真副教授为论文第一及通讯作者,其他通讯作者包括华中农业大学植科院兰彩霞教授和吉林农业大学袁晓辉教授。本研究得到了国家自然科学基金等项目支持。
https://spj.science.org/doi/10.34133/plantphenomics.0201
UAV-Assisted Dynamic Monitoring of Wheat Uniformity toward Yield and Biomass Estimation
https://doi.org/10.34133/plantphenomics.0191
Plant Phenomics | 南农农学院联合前沿交叉研究院提出基于无人机图像田间小麦生长均匀度的定量化方法
Using UAV-Based Temporal Spectral Indices to Dissect Changes in the Stay-Green Trait in Wheat
https://doi.org/10.34133/plantphenomics.0171
Plant Phenomics | 西北农林科技大学基于无人机的时序光谱指数解析小麦持绿在育种进程中的选择
《植物表型组学》(Plant Phenomics)是由南京农业大学创办的英文学术期刊,于2019年1月正式上线发行。采用开放获取形式,刊载植物表型组学交叉学科热点领域具有突破性科研进展的原创性研究论文、综述、数据集和观点。具体范围涵盖高通量表型分析的最新技术,基于图像分析和机器学习的表型分析研究,提取表型信息的新算法,作物栽培、植物育种和农业实践中的表型组学新应用,与植物表型相结合的分子生物学、植物生理学、统计学、作物模型和其他组学研究,表型组学相关的植物生物学等。期刊已被DOAJ、Scopus、PMC、EI和SCIE等数据库收录。科睿唯安JCR2022影响因子为7.6,位于农艺学一区(1/125名),植物科学一区(13/265名),遥感一区(6/62名)。2023年中科院期刊分区位于农林科学大类一区。2020年入选中国科技期刊卓越行动计划高起点新刊项目、2024年入选江苏科技期刊卓越行动计划领军期刊项目。
说明:本文由《植物表型组学》编辑部负责组稿。
审核:孔敏、王平