全断面岩石隧道掘进机(以下简称TBM)是集机、电、液和自动化控制于一体,能够实现破岩、掘进、出渣与隧道支护的大型掘进装备,其具有对围岩扰动小、能连续作业、环境污染小、安全性能高、成硐质量好等优点[1]。然而,随着TBM向“三高”等(高原岩围压、高岩石强度、高石英含量)等极端恶劣地层推广应用,TBM的核心破岩刀具——盘形滚刀(以下简称滚刀)失效严重,从而导致TBM掘进效率低、施工成本高等问题[2]。为了克服上述TBM的性能瓶颈,在当前材料科学与制备技术的约束下,鉴于激光技术在石油钻探领域已取得的良好效果,将激光发生器耦合安装到TBM刀盘上,进行激光预钻孔/预切槽条件下滚刀滚压破碎掌子面岩石,理论上有望实现新型热-机械高效破岩之目的[3]。
目前,一方面由于激光破岩过程涉及到新物质生成、岩石物性改变、热裂纹衍生与扩展等,难以借助理论工具予以准确描述,另一方面由于热-机械耦合效应解耦困难,有关激光辅助滚刀破岩机理的理论建模研究尚不多见。学术界主要针对滚刀及激光的破岩过程分别予以了研究。
(1) 滚刀破岩方面
JI A史莱涅、Hertz、Boussinesq和Davies等对平底压头、半球形压头及楔形压头等不同压头形式侵入岩石过程中的应力分布公式进行了推导[4]。在上述压头侵岩理论的基础上,不少学者基于滚压破岩试验,相继建立了滚刀破岩载荷预测模型。Evans等[5]认为垂直力与侵岩投影面积成正比且将该面积按抛物线围成面积的一半计算。Rostami[6]将垂直力分为压碎下方岩石所需作用力和剪切相邻刀间距间岩石所需作用力两部分,并按三角形面积来确定刀岩接触面积,建立了经典的CSM模型。国内许多科研院所也进行了滚刀破岩预测模型的研究工作[7-9]。但由于对于刀岩作用过程认识的局限性,加之岩石本构行为的复杂性,导致上述模型并未考虑刀岩作用过程中密实核的衍生效应[10]。密实核的衍生效应在滚刀切削破岩过程中的影响是不可忽略的。当滚刀作用于岩石表面时,刃底的岩石表面由于承压产生凹陷,并衍生出微裂纹;随着刀具的不断侵入,裂纹内部的岩石不断受到压缩和剪切的作用,形成了由岩石碎屑粉末组成的密实核;由于密实核的膨胀和变形,密实核周围的岩石持续受压,继而产生剪切破坏并形成破碎区[11]。Alehossein等[12]将刀具侵岩时在裂纹形成之前岩石内部分为密实核区、弹塑性失效区和弹性变形区3个应力区,并基于腔体膨胀理论建立了钝刀侵岩模型。在此基础上,张魁等[13]进一步建立了考虑密实核衍生现象的常截面(CCS)滚刀侵岩载荷模型。有许多学者也通过侵岩[14]、滚压破岩[15]等试验方法,对滚刀破岩机理进一步探究完善。
(2) 激光破岩方面
为了研究激光破岩机理,学者们搭建了诸多试验平台,其中使用的激光器主要为光纤激光器,功率为50 W~9 kW。研究表明:利用激光器发射高能激光束照射在岩石表面,可使岩石在在局部高温作用下发生升温、熔化、汽化和凝固过程,并伴随着热爆裂现象的产生,其表面存在固液气多相混化合物[16]。当激光作用在岩石表面时间较短,岩石表温度未超过其熔点时,其破碎方式主要为热力破碎,破碎后脱落的碎屑可由高压辅助气流带出;当岩石持续吸收激光束的能量,并不断积累超过一定阀值时,岩石就会熔化甚至汽化,此时岩石因为在极短时间内吸收大量能量发生相变,导致体积膨胀,产生热爆裂现象;当熔融物和汽化物不能及时被辅助气体吹出带走时,岩石表面会重新凝固成玻璃状物质,该物质会阻碍激光束能量的进一步传递,不利于激光孔洞的扩张,但在另一方面,该玻璃物质可以加固松散程度较高、力学性能不好的岩石[17-19]。近年来,随着科技的不断进步,人们对激光破岩技术的研究也逐渐深入。由于现有试验设备难以观察和测量破岩过程中激光与岩石相互作用界面的具体形貌,以及熔体-蒸汽界面处的温度状态,大量的学者着力于用理论模型和数值仿真方法研究激光破岩机理[20-22]。研究表明构建激光破岩数值模型能有效观察激光破岩过程中岩石温度和应力场分布,对分析岩石微观和宏观性质变化的有效方法,对指导激光破岩试验测试有重要意义。综上所述,为了用理论描述预制激光孔条件下滚刀侵岩过程,基于小孔应力集中理论的弹性应力状态计算方法,在空腔膨胀模型基础上,拟建立一种考虑密实核衍生效应的激光预钻孔条件下滚刀侵岩理论模型,并开展激光辅助缩尺比例滚刀侵岩试验,尝试从侵岩垂直力的角度,通过理论与试验结果的对比验证,讨论理论模型的正确性。
基于小孔应力集中理论的弹性应力状态计算方法及滚刀侵岩过程中的空腔膨胀模型,建立了一种考虑密实核衍生效应的激光预钻孔条件下滚刀侵岩理论模型,并基于具有自主知识产权的双侧围压装置,开展激光辅助缩尺比例滚刀侵岩试验,从侵岩垂直力的角度,验证理论模型的正确性。
(1) 建立了一种考虑密实核衍生效应的激光预钻孔条件下滚刀侵岩理论模型。随后对该模型进行数值建模分析后发现,随滚刀刃宽增加,密实核区应力呈线性增加,最大侵岩垂直力指数上升;随孔距的增加,密实核区应力、最大侵岩垂直力均呈先下降后上升趋势。
(2) 开展双侧围压下的激光辅助缩尺比例滚刀侵岩试验,并将得出的试验结果与理论分析结果进行对比,发现破岩垂直力在总体上较为吻合。由于在理论模型中未考虑激光破岩中产生的玻璃釉物质对后续侵岩的影响以及假设密实核区的半径为一个固定值,因此理论模型的预测精度有待进一步提升。
综上所述,本文所建立滚刀侵岩理论模型,具有一定的准确性,未来可将滚刀空间运动纳入考察,建立满足工程应用要求的激光辅助TBM破岩预测模型,为激光器-滚刀耦合刀盘的设计提供理论指导。
全文阅读 (拓展出版内容见网页的资源附件)
《岩土工程学报》2024年第6期全文阅读
本刊官网:www.cgejournal.com提供本刊创刊以来所有论文免费阅读下载!另提供岩土工程方面技术和产品的宣传推广服务,电话025-85829543