高熵合金(High-Entropy Alloys, HEAs)和非晶合金(Amorphous Alloys)因其独特的微观结构和优异的性能而受到广泛关注。然而,这两种合金在加工过程中面临一些挑战,根据3D科学谷的了解,其中高熵合金在加工过程中容易产生加工硬化,这会增加进一步加工的难度。而非晶合金的加工通常需要精确的温度控制,以避免晶化和保持其非晶状态,此外非晶合金通常以薄带或小尺寸部件的形式存在,大规模生产大块非晶材料仍然是一个挑战。
近期,山东大学机电与信息工程学院宋凯凯教授团队在高熵合金和非晶合金等新型无序合金研究领域取得了一系列进展,在Acta Materialia、International Journal of Plasticity、Science Bulletin、Journal of Materials Science & Technology、Wear、Materials & Design等期刊发表了相关成果。这些成果在新型无序合金的成分优化、结构调控、性能提升和构件成型等方面提出了新的见解,为高性能金属合金的研发提供了理论支持和技术方案。
▲图1 机器学习运算流程及其验证流程
© 山东大学
机器学习技术在高熵合金的开发中发挥着越来越重要的作用,机器学习不仅加速了新材料的发现,还提高了材料设计和优化的效率和准确性。机器学习可以帮助科学家理解不同元素组合对合金性能的影响,从而优化合金的设计。通过学习现有数据集中的模式,预测新材料的性质和行为,从而减少了传统试错法所需的时间和资源。
3D科学谷发现
3D Science Valley Discovery
关键点:
机器学习在合金成分设计中的应用:通过使用生成对抗网络和XGBoost等机器学习技术,团队优化了合金成分设计过程,提高了效率,并发现了具有超高显微硬度和低密度的新型轻质高性能合金。
超快速退火和深冷处理工艺:通过这些先进的热处理工艺,团队显著提高了TRIP型双相高熵合金的力学性能,为制备高强度和高韧性的高熵合金开辟了新途径。
晶界工程:在高铬多主元合金中,通过晶界工程实现了超细晶结构和强塑性的优化,同时避免了晶界处脆性相的析出,从而提高了合金的综合性能。
增材制造中的裂纹问题:通过在增材制造过程中引入Fe基金属非晶合金粉末,成功解决了裂纹问题,并提高了高熵合金复合材料的力学性能。
高碳添加对高熵合金性能的影响:研究发现,添加碳元素可以显著提高Co37Cr28Ni31Al2Ti2高熵合金的硬度和磨损抗性,为提高合金的耐磨性提供了有效策略。
超声振动成形技术:团队探索了在不同液体环境下超声振动成形块体非晶合金的新工艺,为在复杂液体环境中高效加工非晶合金提供了支持。
Insights that make better life
材料科学的数字化发展
#1
进展
中/高熵合金由于特殊的微观结构和出色的性能而受到重视,但传统合金成分设计方法费时费力。新兴的机器学习提供了一种高效的解决方案。团队从不同合金系统中收集和扩展了成分-显微硬度数据对,使用生成对抗网络将这些数据对转换为经验参数-显微硬度对【Mater Des 238 (2024) 112634】;团队采用主动学习方法对Al-Co-Cr-Cu-Fe-Ni系统进行筛选,并确定XGBoost作为最佳深度学习主模型;团队使用XGBoost子模型进行数百万次数据训练迭代(图1),利用EI算法进行准确性评估,建立了高熵合金成分与显微硬度之间的关系,所提出子模型与实验数据良好一致。
其中,四种富铝成分表现出超高显微硬度(>740 HV,最大约为780.3 HV)和低密度(<5.9 g/cm3)的铸态块体。这种轻质高性能合金在薄膜或涂层工程应用方面显示出巨大应用潜力。
▲图2 (a)超快速退火和深冷处理过程中显微组织演变机制,(b)工程应力-应变曲线以及(c)当前工作与参考文献中Fe50Mn30Co10Cr10高熵合金(HF、HM、HR、CR、AN、MI、SPS、FSW和AM分别代表热锻、均质化、热轧、冷轧、退火、机械铣削、放电等。
#2
进展
▲图3 力学性能。(a)均质、热挤压、冷轧和退火样品的工程应力-应变曲线。(b)典型的fcc结构CoCrFeMnNi(基)、FeCoNiCr(基)、CoCrNi(基)和FeCoNi(基)多主元合金的均匀伸长率和抗拉强度之间的关系以及(c)富含晶界富Cr σ相的合金。(d)维氏硬度。
#3
进展
#4
进展
#5
进展
#6
进展
山大观点 l
宋凯凯教授团队在高性能无序金属材料研发领域取得系列新进展
谷.专栏
投稿邮箱:2509957133@qq.com
欢迎 投稿
山东大学 l 利用三轴打印机进行连续纤维增强复合材料的非平面增材制造
中南大学 l 极限抗拉强度≥1200 MPa! L-PBF制造三重颗粒强化高强Al0.7CoCrFeNi2.4过共晶高熵合金
西工大苏海军教授团队 l 新突破!激光粉末床熔融共晶高熵合金原位自生复合材料
www.3dsciencevalley.com