3D打印在电化学储能领域已经得到广泛的应用。一般情况下,具有优异导电性的轻质碳材料成为研究的热点。然而由于碳基器件相对较低的面积和体积能量密度,极大地限制了其在实际中的应用范围。对称型超级电容器具有高的功率密度和安全稳定性,但是它的工作电压较低阻碍了其能量密度的发挥。
近日,苏州大学能源学院、苏州大学——北京石墨烯研究院协同创新中心的孙靖宇教授课题组,采用湿法化学及热磷化步骤,结合3D打印构筑非对称超级电容器,这为制备高面积/体积能量密度器件提供新的方法。研究成果发表在《Nano-Micro Letters》上,标题为《3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density》。借助纳微快报的分享,本期3D科学谷与谷友共同领略关于3D打印在高能量密度器件领域的突破。
▲论文链接:https://doi.org/10.1007/s40820-020-00483-5
在电化学储能领域,3D打印技术的应用正在迅速发展,尤其是在制造具有高面积和体积能量密度的能源存储设备方面。传统的碳基超级电容器虽然具有高功率密度和良好的安全稳定性,但它们的工作电压较低,限制了能量密度的提高。为了克服这些限制,研究人员正在探索使用3D打印技术来制造新型的电极结构。”
3D科学谷发现
3D Science Valley Discovery
关键点:
复合材料的制备:通过湿法化学和原位磷化步骤制备了NiCoP/MXene复合材料,这种材料结合了两种材料的优点,提高了电化学性能。
3D打印技术的应用:利用3D打印技术精确控制电极的厚度和负载量,从而优化了电极的性能。
非对称超级电容器的设计:通过设计非对称超级电容器结构,提高了工作电压,从而增加了能量密度。
电化学性能的测试:通过三电极体系测试了复合材料的循环伏安曲线和充放电性能,验证了材料的高电容和良好的循环稳定性。
Insights that make better life
本文亮点
内容简介
苏州大学能源学院、苏州大学——北京石墨烯研究院协同创新中心的孙靖宇教授课题组,采用湿法化学及热磷化步骤,结合3D打印构筑非对称超级电容器,这为制备高面积/体积能量密度器件提供新的方法。
该工作可控合成了NiCoP/MXene (NCPM)复合材料,通过3D打印构筑厚度及负载可调的电极,设计制备了NCPM-CNT//AC-CNT的非对称超级电容器,评估了其面积及体积能量密度,得出如下结论:
(1)复合材料相比于单独MXene和NCP具有更好的电化学性能;
(2)CNT作为墨水的调粘材料,不仅可以维持电极结构的骨架,还可以提供良好的导电网络;
(3)3D打印的非对称超级电容器结构最终可实现高的面积和体积能量密度。
图文导读
II 复合材料的形貌表征
▲图5. (a) 3D打印非对称超级电容器正负极电极。(b) 在10 mV/s扫速下打印电极的CV曲线。(c) 不同电压区间内的CV曲线。(d) 不同扫速下的CV曲线。(e) 不同电流密度下的GCD曲线。(f) 两电极对应的长循环稳定性。(g) 打印NCPM与其它体系的面积与体积能量密度对比。
微纳快报 l
3D打印NiCoP/MXene复合电极材料:构建高面积/体积能量密度储能器件
纳微快报:
Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、在Springer Nature开放获取(open-access)出版的学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, perspective, highlight, etc),包括微纳米材料与结构的合成表征与性能及其在能源、催化、环境、传感、电磁波吸收与屏蔽、生物医学等领域的应用研究。已被SCI、EI、PubMed、SCOPUS等数据库收录,2022JCR影响因子为 26.6,学科排名Q1区前5%,中科院期刊分区1区TOP期刊。
3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density
Lianghao Yu, Weiping Li, Chaohui Wei, Qifeng Yang, Yuanlong Shao, Jingyu Sun*
Nano‑Micro Lett.(2020)12:143
https://doi.org/10.1007/s40820-020-00483-5
本文通讯作者简介
近年来在Adv. Mater., Nature Commun., Energy Environ. Sci., J. Am. Chem. Soc., Adv. Energy Mater., ACS Nano等期刊发表学术论文120余篇。发展了低维碳材料可控生长的Direct-CVD技术,探索研发石墨烯玻璃、石墨烯晶圆、烯碳隔膜等新材料,实现了烯碳基墨汁的宏量制备及能源器件的印刷化集成。研究成果被科学网, Nature Mater., Materials Views, Phys.org等亮点报道。主持中组部人才计划项目、国家重点研发计划“变革性技术关键科学问题”重点专项子课题、国家自然科学基金委、江苏省科技厅、苏州市科技局等科研项目7项。获北京大学优秀博士后奖、江苏省“六大人才高峰”、苏州大学优秀博士学位论文指导教师(2019)、苏州大学五四青年奖(2020)、牛津大学Varsity Award等奖励。 |
www.3dsciencevalley.com