文章标题:Convergence and divergence of diploid and tetraploid cotton genomes
研究背景
研究方法
该研究根据进化树、表型变异、地理分布,从216份亚洲棉材料挑选了15份进行了PacBio测序,从3606份陆地棉材料挑选了23份半野生种系和37份栽培种品种进行了PacBio和ONT的三代测序,精细组装了15份亚洲棉和35份陆地棉材料(包括半野生种系20份、栽培种15份)的基因组,分别构建了基于基因和结构变异的泛基因组。
研究结果
该研究首次提出二倍体与四倍体图形泛基因组的比较方法,鉴定了 A 基因组中1150 Mb 同线区(SYN)和 520 Mb 高分歧区(HYD)(图2)。HYD相较于SYN展现出更高的存在/缺失变异(PAV)多样性水平,进而导致了种质间变异增加。在高分歧区中LTR反转录转座子比例远高于同线区,而DNA转座子在同线区高于高分歧区,表明在高分歧区中含有大量扩增的LTR 。所有材料间同线区和高分歧区LTR序列分析表明多倍化后At-Dt之间较A2-D5之间更为相似。A2中高分歧区的LTR爆发约0.6 MYA,D5约1.9 MYA,At约0.6 MYA,Dt约0.4 MYA,表明At与Dt中的LTR爆发呈现协同模式。进一步,发现A2和D5基因组中着丝粒在同线区高于高分歧区,而多倍化后高分歧区远高于同线区。这些表明,多倍化后陆地棉的两个亚基因组呈现趋同演化特征。
图2-转座子扩增对二倍体和四倍体基因组大小演化的影响
进一步,将结构变异与1005个亚洲棉和2215个陆地棉的纤维转录组相结合,鉴定出在育种选择下,两种倍性水平间保守的调控模式(图3)。亚洲棉和陆地棉的eQTL-eGene 的微共线性分析表明,57% (A2)或 63% (At) 的eQTL-eGene位于各自基因组的共线性区域;20% (A2)或22% (At) 的eQTL-eGene序列在另一个基因组中丢失,但是eGene存在;此外,还有23% (A2)或15% (At) 的eGene发生了丢失,A2 和 At 之间只有 28 个eQTL-eGene的共享调控关系。为了研究种间调控差异,进一步比较了二倍体和四倍体直系同源基因的表达模式,在 A2 和 At 中,发现 9258 个非冗余的种间 PAV与 4573 个直系同源基因的表达模式分歧有关。这些结果表明二倍体和四倍体之间结构变异影响了基因表达调控。
该研究利用亚洲棉群体鉴定了34个纤维品质相关的PAV-QTL, 其中21个为新的QTL ,利用陆地棉群体鉴定了40个纤维品质相关的PAV-QTL,其中24个为新的QTL (图4)。在这些QTL中,亚洲棉与陆地棉存在6个与纤维品质选择的保守QTL,分别位于1号、6号和12号染色体。6个保守QTL内显著的PAV与PAV-eQTL共定位,共同调控44个eGene的表达。例如在1号染色体上,A2和Dt中直系同源的候选基因(GA2OX4),受到非同源PAV-eQTL的调控,且PAV-eQTL在陆地棉驯化和改良中同时受到选择。大多数控制纤维品质的遗传位点在亚洲棉和陆地棉是独立存在的,说明控制二者纤维品质的遗传变异差异很大,为未来利用亚洲棉中独特的优异变异改良陆地棉的纤维品质提供了靶点。
研究总结
该研究构建了二倍体和四倍体棉花图形泛基因组,解析了基因组结构变异从陆地棉半野生种系向栽培种渐渗的图谱,创新了多倍化驱动的基因组结构演化规律;鉴定了纤维品质形成的遗传调控共性和分歧模块,推动了开辟棉花生物育种优异遗传资源精准创制的新途径,为通过种间渗入实现纤维品质的基因组靶向改良提供了支撑。这项研究加强了对于不同倍性物种重要性状平行选择的理解,为在其他植物不同种间泛基因组比较和同一性状形成的遗传机制研究提供了参考。
内容来源于华中农业大学南湖新闻网,侵删
相关案例:
百迈客生物服务与产品
扫码 | 联系我们
更多平台
扫码学习
bilibili号
扫码关注
视频号
扫码查看
知乎号
关于百迈客生物: