首页
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
更多
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
带挤压约束的拓扑优化-OS-T:2090
文摘
2024-11-14 08:01
四川
独乐乐不如众乐乐,收藏链接不如直接转发,欢迎大家分享,共同精进。
挤压成型是一种通过施加压力使金属或塑料通过特定模具孔挤出,形成具有一定截面和形状的零件的制造工艺。在金属加工中,尤其是铝挤压成型,它是将金属坯料放在模具型腔内,通过强大的压力使金属产生定向塑性变形,从而获得所需形状和尺寸的零件或半成品。挤压成型具有许多优点,如生产效率高、制品综合质量高、产品范围广、生产灵活性大以及工艺流程简单、设备投资少。
在塑料加工领域,挤出成型是一种高效、连续、低成本的成型加工方法,适用于大多数塑料材料。挤出成型过程主要包括加料、熔融塑化、挤压成型、定型和冷却等过程。
OptiStruct的挤压约束是指在拓扑优化过程中,对模型的某个区域施加挤压约束,以达到特定的设计要求。挤压约束可以用于多种场景,例如在型材的优化中,可以对型材的进行挤压约束。
在本教程中,您将学习如何使用挤压约束方法来优化挤压成型的零件设计,以确保沿给定路径获得恒定的横截面,这在制造通过挤压工艺生产的零件时尤为重要。
在开始之前,请将本教程中使用的文件复制到您的工作目录。
http://majorv.help.altair.com/minorv/simulation/tutorials/hwsolvers/optistruct/OS-T-2090/rail_complete.zip
通过在拓扑优化中使用挤压制造约束,无论初始网格、边界条件或载荷如何,都可以获得
恒定横截面的模型设计。
本教程介绍了在弯曲梁上进行拓扑优化的步骤,该梁模拟了车辆在轨道上的移动,并在两端得到支撑。为了模拟车辆的运动,我们在七个独立的载荷工况中,在钢轨的长度上施加点载荷。导轨的设计考虑了挤出制造工艺。此外,还展示了在HyperMesh中定义拓扑设计空间、挤出制造约束以及优化参数(包括响应、目标和约束)的步骤。
DTPL (Design Variable for Topology Optimization) 卡用于此优化。
在本教程中,您将对弯曲的梁执行拓扑优化,以使拉伸的轨道更硬且材料更少。
优化问题表示为:
Objective:
最小化加权柔度。
Constraints:
体积分数< 0.3
Design variables:
设计空间中每个Element的密度。
图1.具有载荷和边界条件的弯曲梁的有限元网格
一、
启动HyperMesh并设置OptiStruct用户配置文件
1
启动HyperMesh。
此时将打开
User Profile对话框。
2
选择
OptiStruct
,然后单击
OK
。
这将加载用户配置文件。它包括相应的模板、宏菜单和导入阅读器,将HyperMesh的功能缩减为与生成OptiStruct模型相关的功能。
二、
导入模型
1
点击
File
>
Import
>
Solver Deck
。
导入选项卡将添加到您的选项卡菜单中。
2
对于File type ,选择
OptiStruct
。
3
选择文件图标。
此时将打开Select OptiStruct文件Browser。
4
选择
保存到工作目录的
rail_complete.fem文件。
5
单击
Open
。
6
单击
Import
,然后单击
Close
以关闭Import选项卡。
三、
设置优化
1
2
3
3.1
创建Topology Design variables
在此步骤中,您将创建拓扑设计空间定义design_solid。在此设计属性Collector中组织的所有Element都将包含在设计空间中。
1.
在Analysis页面中,单击
optimization
。
2.
单击
topology
。
3.
选择
create
子面板。
4.
在desvar= 字段中,输入
design_solid
。
5.
将type: 设置为
PSOLID
。
6.
使用props选择器,选择
new_solid
。
7.
单击
create
。
3.2
定义挤出和挤出路径
1.
在模型视窗中显示节点71559 和70001 的编号。
a)
在Display工具栏中,单击 以打开Numbers面板。
b)
单击
nodes
>
by id
,然后在id= 字段中输入71559,70001。
c)
选择
display
。
d)
单击
on
。
e)
单击
return
。
2.
定义挤出路径。
a)
在拓扑子面板中,选择
extrusion
子面板。
b)
双击
desvar =
并选择
design_solid
。
c)
从none切换到NO
twist
。
拉伸约束可以分别通过使用NOTWIST或TWIST参数应用于以非扭曲截面或扭曲截面为特征的域。
d)
点击
node list
>
by path
,然后选择节点
71559
第一个和节点
70001
第二个。
e)
单击
update
。
应突出显示一条从71559 开始并以节点70001 结尾的节点线,以指示挤出路径。
不需要选择尽可能多的节点来定义曲线。这是一个练习,用于说明也可以使用nodes > by path选项。
必须通过输入一系列网格来定义'discrete' 挤出路径。
然后,使用参数化样条曲线对这些栅之间的曲线进行插值。网格的最小数量取决于挤出路径的复杂程度。线性路径只需要两个网格,但建议至少使用5-10 个网格来表示更复杂的曲线。
图2.拉伸路径定义
3.
单击
return
返回Optimization面板。
3.3
创建优化响应
1.
在Analysis页面中,单击
optimization
。
2.
单击
Responses
。
3.
创建体积分数响应。
a)
在responses= 字段中,输入
Volfrac
。
b)
在响应类型下方,选择
volumefrac
。
c)
将regional selection设置为
total
和
no regionid
。
d)
单击
create
。
4.
创建加权柔度响应。
a)
在responses= 字段中,输入
wcomp1
。
b)
在响应类型下方,选择
weighted comp
。
c)
单击
loadsteps
,然后选择所有Load Step。
d)
单击
return
。
e)
单击
create
。
5.
单击
return
返回Optimization面板。
3.4
创建设计约束
1.
单击
dconstraints
面板。
2.
在constraint= 字段中,输入
constr1
。
3.
单击
response =
并选择
Volfrac
。
4.
选中upper bound
旁边的框
,然后输入
0.3
。
5.
单击
create
。
6.
单击
return
返回Optimization面板。
3.5
定义目标函数
1.
单击
objective
面板。
2.
验证是否
选择了
min。
3.
单击
response=
并选择
wcomp1
。
4.
单击
create
。
5.
单击
return
两次以退出Optimization面板。
四、
运行优化
1.
在Analysis页面中,单击
OptiStruct
。
2.
单击
save as
。
3.
在
Save As
对话框中,指定写入OptiStruct模型文件的位置,并在文件名中输入
rail_complete_extrusion
。
对于OptiStruct求解器模型,建议使用
.fem
扩展名。
4.
单击
Save
。
input file字段显示在
Save As
对话框中指定的文件名和位置。
5.
将导出选项切换设置为
all
。
6.
将run options切换设置为
optimization
。
7.
将内存选项切换到
upper limit in Mb
,然后输入
2000
。
8.
单击
OptiStruct
运行优化。
作业完成时,窗口中会显示以下消息:
OPTIMIZATION HAS CONVERGED.
FEASIBLE DESIGN (ALL CONSTRAINTS SATISFIED).
如果存在错误消息,OptiStruct还会报告错误消息。可以在文本编辑器中打开文件
rail_complete_extrusion.out
以查找有关任何错误的详细信息。此文件将写入与
.fem
文件相同的目录。
9.
单击
Close
。
五、
查看结果
1.
2.
4
5
5.1
加载结果文件和后处理
1.
在OptiStruct面板中,单击
HyperView
。
2.
在Results Browser中,选择列出的最后一个迭代。
默认情况下,迭代0 处于选中状态,它会在优化开始时显示您的结果。最后一次迭代显示了此优化的最终分析结果。
图3.
3.
在Results工具栏中,单击 以打开ISO Value面板。
4.
将Result type:设置为
Element Densities
。
5.
单击
Apply
。
6.
在Current value字段中,输入
0.3
。
7.
单击
Apply
。
制造挤出约束的结果允许在模型的整个长度上保持恒定的横截面。
图4.弯曲梁轨道布局的ISO图。
使用挤出约束进行拓扑优化
5.2
查看拉伸零部件的剖面
在Section Cut面板中,您可以创建穿过模型的平面截面。当您想要查看模型内部的详细信息时,这非常有用。
1.
在Display工具栏上,单击 以打开Section Cut面板。
2.
单击
Add
创建新的Section Cut。
3.
将Define plane设置为
Y Axis
。
4.
使用Base选择器,单击模型中心的任何角。
5.
单击
Apply
。
6.
移动Define plane下的滑块以滚动模型。
7.
在Display options下,使用Width旁边的滑块更改横截面的宽度。
制造拉伸约束的结果显示模型长度上的横截面恒定。
图5.
在弯曲梁的x-z平面上剖面剖切的云图。
TodayCAEer
花有重开日,人再无少年
最新文章
基于复合材料的车架尺寸优化
应力应变曲线:材料力学性能的“指纹”
链接变量的尺寸优化
学习不能停,开启新的篇章-尺寸优化:轨道接头的尺寸优化
optistruct的组合优化更新完成
Hypermesh二次开发:开发个球
ANSA二次开发:创建常驻窗口
复合材料OHT尺寸优化Phase 3
复合材料OHT自由尺寸优化与复合材料OSsmooth应用Phase 2
使用optistruct进行复合材料OHT模型搭建Phase 1
借助excel将工程应力应变曲线转换为真实应力应变曲线
HyperWork教程合集
ANSA教程合集
使用Python作为二次开发语言,所遇到的调试问题
使用optistruct对汽车控制臂晶格进行尺寸优化Phase2
使用optistruct对汽车控制臂进行晶格拓扑优化Phase1
优化分析结果解读--hypermesh OSSmooth功能介绍
复合材料的铺层堆叠顺序优化 - phase3
飞机下腹部复合材料整流罩的尺寸优化-phase2
拓扑与形貌的组合优化
飞机下腹部复合材料整流罩的组合优化-phase1
Simlab二次开发-基于Python的支架线性分析前后处理
形貌优化
随机响应工况下的形貌优化-OS-T: 3030
HyperWork教程合集
形貌优化结果解读-OSsmooth-OS-T: 3020
HyperWork教程合集
通过形貌优化提升支架的一阶模态频率案例-OS-T:3010
HyperWork教程合集
扭转工况下的形貌优化-OS-T:3000
HyperWork教程合集
拓扑优化新方向,基于COMSOL声学拓扑优化
拓扑优化
OptiStruct的 .fem 文件格式及其应用案例
使用等效静载荷法进行拓扑优化-OS-T:2098
从入门到放弃:HyperWorks仿真分析/二次开发案例集合
基于频响分析的拓扑优化-OS-T:2095
从入门到放弃:HyperWorks仿真分析/二次开发案例集合
带挤压约束的拓扑优化-OS-T:2090
从入门到放弃:HyperWorks仿真分析/二次开发案例集合
应用应力约束的拓扑优化-OS-T:2080
从入门到放弃:HyperWorks仿真分析/二次开发案例集合
使用超单元进行拓扑优化-OS-T:2070
从入门到精通:HyperWorks仿真分析/二次开发案例集合
重磅Nature!九零后女博士首次提出深度学习与流体力学融合,引发前沿技术新概念
同时应用拔模和对称约束的拓扑优化-OS-T:2060
从入门到精通:HyperWorks仿真分析/二次开发案例集合
在拓扑优化中的应用模式组重复-OS-T:2050
从入门到精通:HyperWorks仿真分析/二次开发案例集合
焊点的拓扑优化-OS-T:2040
分类
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
原创标签
时事
社会
财经
军事
教育
体育
科技
汽车
科学
房产
搞笑
综艺
明星
音乐
动漫
游戏
时尚
健康
旅游
美食
生活
摄影
宠物
职场
育儿
情感
小说
曲艺
文化
历史
三农
文学
娱乐
电影
视频
图片
新闻
宗教
电视剧
纪录片
广告创意
壁纸头像
心灵鸡汤
星座命理
教育培训
艺术文化
金融财经
健康医疗
美妆时尚
餐饮美食
母婴育儿
社会新闻
工业农业
时事政治
星座占卜
幽默笑话
独立短篇
连载作品
文化历史
科技互联网
发布位置
广东
北京
山东
江苏
河南
浙江
山西
福建
河北
上海
四川
陕西
湖南
安徽
湖北
内蒙古
江西
云南
广西
甘肃
辽宁
黑龙江
贵州
新疆
重庆
吉林
天津
海南
青海
宁夏
西藏
香港
澳门
台湾
美国
加拿大
澳大利亚
日本
新加坡
英国
西班牙
新西兰
韩国
泰国
法国
德国
意大利
缅甸
菲律宾
马来西亚
越南
荷兰
柬埔寨
俄罗斯
巴西
智利
卢森堡
芬兰
瑞典
比利时
瑞士
土耳其
斐济
挪威
朝鲜
尼日利亚
阿根廷
匈牙利
爱尔兰
印度
老挝
葡萄牙
乌克兰
印度尼西亚
哈萨克斯坦
塔吉克斯坦
希腊
南非
蒙古
奥地利
肯尼亚
加纳
丹麦
津巴布韦
埃及
坦桑尼亚
捷克
阿联酋
安哥拉