困扰行业四十年,胡勇胜、容晓晖、陆雅翔、黄建宇最新Science破解!

科技   2024-10-07 08:08   天津  
层状金属氧化物因其出色的容量和可扩展性,被认为是LIBs和NIBs正极材料的理想选择。这里的容量指的是电池存储能量的能力,而可扩展性指的是材料可以被大规模生产的特性。与锂层状氧化物(LLOs)相比,钠层状氧化物(NLOs)具有相同的化学式NaxTMO2,其中TM代表过渡金属。尽管NLOs没有富含镍的设计(这是LLOs不稳定的主要原因),但它们仍然面临着一个关键的挑战。NLOs对空气暴露极为敏感,即使在没有镍的情况下,它们也会在几小时内迅速降解。这种敏感性导致了电池容量的损失、电极制造的困难以及性能的下降。这种空气不稳定性问题已经阻碍了NLOs的全面利用超过40年,解决这个问题对于释放其潜力、彻底改变能源存储领域以及加速实用NIBs的发展至关重要。
鉴于此,中科院物理研究所胡勇胜研究员、容晓晖特聘研究员、陆雅翔副研究员与燕山大学黄建宇教授合作,展示了水蒸气在与二氧化碳或氧气分别结合时,对引发NLOs的破坏性酸和氧化降解起着关键作用。定量分析揭示,降低定义的阳离子竞争系数(η),该系数综合了离子势和钠含量的影响,以及增加颗粒尺寸可以增强对酸攻击的抵抗力,而使用高电位的氧化还原对可以消除氧化降解。这些发现阐明了空气劣化机制的内在原因,并为设计空气稳定的NLOs提供了理论依据。相关研究成果以“Decoupling the air sensitivity of Na-layered oxides”为题发表在《Science》上。本文第一作者是中国科学院物理研究所Yang Yang,燕山大学Wang Zaifa。    
【工作要点】
大气成分的耦合、预覆盖的残留物和环境影响在事后表征中的效应可能会掩盖清晰的降解路径。这导致了各种降解模型的出现,包括水分子插层、过渡金属的氧化、CO2与表面或体积中残留物的直接反应、CO2H2O的吸附与碳酸根离子的插层,以及Na+/H+Na+/H3O+与水的交换等。尽管有争议,但水蒸气自身破坏性的作用被广泛强调,并将被本文的发现所挑战。除了不明确的机制外,缺乏标准方法和定量分析进一步阻碍了对不同NLOs空气稳定性的准确评估,从而掩盖了设计原则。因此,迫切需要全面理解空气不稳定性问题,并合理设计空气稳定的NLOs。
本工作选择了O3-NaNi1/3Fe1/3Mn1/3O2(NFM111)作为模型体系。这是一种因其高容量和可扩展性而被广泛研究的材料,但受到空气稳定性差的限制。通过一系列原位和非原位观察,研究发现水蒸气本身并不破坏NFM111及其类似物,而是作为关键因素,与CO2O2分别共同导致不同的酸和氧化降解。    
Fig. 1. NFM111在不同气氛下暴露后的结构、形态演变和容量损失。(A) NFM111暴露于相对湿度(RH)为50%的空气中24小时的原位XRD(X射线衍射)模式。(B) 在2.0至4.0 V(相对于Na+/Na)的电压范围内,以0.2C(30 mA g−1)的速率对新鲜和暴露于RH为50%空气中48小时的NFM111进行恒流充放电电压曲线的初始周期。(C) NFM111暴露于不同气氛下的XRD模式,放大了(003)、(104)和(110)的区域。相应的气氛由环形图例中的三种基本气体的各种组合表示(右侧),当水蒸气、CO2O2存在时,三个分开的灰色部分分别被涂成蓝色、黄色和红色。环内和环外分别指示了RH和处理时间。(D至K) NFM111在不同气氛下暴露后的扫描电镜(SEM)图像。在(H)至(J)中,凸起用圆圈标记。比例尺,(D)至(K)中1毫米。    
Fig. 2. 通过动态观察和同位素标记策略对酸降解进行表征。(A至I) NFM111清洁纳米晶体在(A)之前和(B) CO2暴露30分钟后(p = 7 mbar);(C)之前和(D)水蒸气暴露2小时后(p = 0.5 mbar);[(E)和(H)]之前和(F)及(G)水蒸气和CO2暴露1小时和2小时后[(ptotal = 0.5 mbar)]的原位环境透射电镜(ETEM)图像。(J) ToF-SIMS(飞行时间二次离子质谱)表征的选定代表性二次离子片段的三维渲染。样品在N2中与H2^18O蒸汽存放72小时,并在CO2与H2^18O蒸汽中存放24小时。(K) 在D2O蒸汽和CO2中存放12小时的样品的NPD(中子粉末衍射)模式的细化,其中D原子被放置在Na层的四面体位点上(插图中的Natetra)。(L) nPDF(中子对分布函数)具有主要原子对的贡献。用星号标记的键是通过在NFM111的Na层中放置D原子在四面体位点上计算得出的。    
Fig. 3. 氧化和酸降解中的结构和化学异质性。(A和B) NFM111和NFM424在O2和水蒸气(RH = 80%)中存放48小时前后的Ni K边和Mn K边XANES(X射线吸收近边结构)光谱。(C) NFM424、NFM111和NFM121在O2和水蒸气(RH = 80%)中存放48小时前后的Ni L边软XAS(X射线吸收光谱)的TFY(全荧光产额)模式光谱。NFM424和NFM111在O2(RH = 0%)中存放48小时的光谱也被比较。(D至G) NFM111在不同气氛中存放后Mn L边软XAS的TEY(全电子产额)模式(D)、OK边TEY模式(E)、OK边TFY模式(F)和Ni L边TEY模式(G)的光谱:H-48在N2和水蒸气(RH = 90%)中存放48小时;C-48在CO2(RH = 2%)中存放48小时;HO-48在O2和水蒸气(RH = 80%)中存放48小时;HC-12在CO2和水蒸气(RH = 60%)中存放12小时;HA-48在潮湿空气中(RH = 60%,CO2浓度约600 ppm)存放48小时。(H) NFM424、NFM111和NFM121在O2和水蒸气(RH = 80%)中存放48小时前后的Ni L边TEY模式软XAS光谱。NFM424和NFM111在O2(RH = 0%)中存放48小时的光谱也被比较。(I至K) NFM111在CO2和水蒸气中存放12小时(I)、O2和水蒸气中存放48小时(J)和潮湿空气中(RH = 60%,CO2浓度约600 ppm)存放48小时(K)后的STEM(扫描透射电镜)图像。比例尺,(I)至(K)中2纳米。    
Fig. 4. O3-NLOs在空气中的降解机制示意图。左侧,展示了不同组合的CO2O2和水蒸气对材料劣化的贡献。中间,展示了通过酸降解和氧化降解途径在初始阶段的表面反应及其相应的产物。右侧,展示了随后的化学和结构演变。    
图 5. 酸和氧化降解影响的量化以及开发空气稳定 NLO 的对策。
【结论】
本文针对钠层状氧化物(NLOs)的空气敏感性问题上,提出了以下几点:
一、研究发现,水蒸气在与二氧化碳(CO2)或氧气(O2)结合时,会分别引发NLOs的酸降解和氧化降解。水蒸气本身并不是NLOs降解的主要原因,而是作为连接CO2O2与NLOs的“桥梁”。
二、文章提出了两种主要的降解途径:酸降解和氧化降解。在酸降解中,CO2的存在改变了Na+/H+交换的平衡,导致NaHCO3Na2CO3的形成;而在氧化降解中,共存的H2OO2通过氧化NLOs中的过渡金属离子产生OH-
三、研究者提出了一种新的定量分析方法,称为标准量化空气稳定性方法(SQMAS),用于测量NLOs中Na+的损失量,从而评估材料的空气稳定性。    
四、基于上述发现,文章提出了提高NLOs空气稳定性的设计原则。这包括减少阳离子竞争系数(h),增加粒径,以及使用具有高电位的氧化还原对来消除氧化降解。
五、通过调整NLOs的化学组成和结构,可以提高其抗酸和抗氧化稳定性。例如,通过减少Ni2+Mn3+的含量,引入具有更高氧化还原电位的TM离子(如Cu2+和Fe3+),可以提高材料的抗氧化稳定性。通过结合上述策略,研究者成功合成了具有改进空气稳定性的NLOs样品,这些样品在循环性能上表现出色,证明了它们在实际应用中的潜力。
文章强调了进一步探索提高NLOs空气稳定性的重要性,并指出了在商业化生产中可能面临的挑战,包括环境湿度控制的成本和长距离运输的问题。
Yang, Y., Wang, Z., Du, C., et al. (2024). Decoupling the air sensitivity of Na-layered oxides. Science, 385(744), 752-762.    
来源:科学电池网,转载仅供阅读学习,推广交流!

电池世界在线
电池世界在线——专注于新能源行业领域内的技术交流、会议展览以及品牌的推广建设服务,专注钠电、锂电、储能、新材料的技术传播与交流。 服务宗旨:做有影响力的品牌会议 ——电池用碳材料论坛、软包锂电池论坛、钠离子电池论坛、下一代电池正极材料论坛
 最新文章