TIA 全称为 trans-impedance amplifier,也就是跨阻型放大器。
在需要电流转电压的应用场合, 如检测微弱光电流信号的场合, 通常需要用到跨阻型放大器。本文介绍了高速 TIA 应用中关注的指标及计算过程,另外介绍了在光检测应用下常见问题的解决。在 TIA 应用时, 由于输入信号是电流, 能够应用于这种场合的跨阻放大通常需要具备较低的电流噪声和电压噪声。比较典型的两个器件是:OPA657(1.6GHz,输入电流噪声 1.8 fA/rtHz,输入电压噪声 4.8nV/rtHz),OPA847(3.9GHz,输入电流噪声 2.5pA/rtHz, 输入电压噪声 0.85nV/rtHz), 这两款都是Decompensated 放大器。. Decompensated 放大器指的是非单位增益稳定的放大器,如 OPA657 最小稳定增益是 7V/V,OPA847 则为 12V/V。Figure 1.decomp 和单位增益稳定运放波特图 带宽更宽,尤其是小信号下的带宽更宽,Slew rate 更快,以及更大的 GBW。另外一般来讲,decompensated 的放大器能够提供更好的电压噪声。所以在大增益的跨阻放大且要求一定带宽的场合,使用 decompensated 放大器要比单位增益稳定放大器有优势。 一个用于光电流检测的常规的跨阻型运放的工作电路一般简化如下:Figure3.TIA 用于 DAC 输出电流检测电路 对一定的运放,其 GBP 是固定的,Cdiff(芯片输入的寄生差分容值),Ccm(芯片输入的寄生共模容值)也是固定的,选定前面的光检测管 APD 或 PIN 后,其寄生容值 CD 也就是固定了,当放大倍数 RF 固定的时候,其能达到的-3dB 闭环带宽大约为:但是由于前端的寄生电容Cs和 Rf会在噪声增益曲线上形成一个零点,导致运放的开环增益曲线和噪声增益曲线相交处的逼近速度为-40dB/dec,这样就会造成运放的不稳定,也就是会引起自激。其波特图如下:所以要达到这样一个稳定工作有一个前提,需要采用 CF 来作补偿,在该曲线中引入一个极点。补偿后的曲线如下: 所以需要让运放稳定工作,且达到最宽的 2 阶 butterworth 频响,其 CF 的取值如下:对于 decompensated 的运放,由于其最小增益的要求,还引来另外一个要求,就是其增益要大于其最小稳定增益,由于在高频下,其增益表达式如下: 所以对特定的 decompensated 的运放,这个值要大于其最小增益要求。在一个假定前端的寄生容性为 10pF 的场合,以下是几个运放能达到的带宽和增益的对应关系:在由以上公式算出的带宽后,运放本身带来的噪声贡献可以由如下公式算出:IEQ = 等效的输入噪声电流,这个值在带宽 F < 1/(2πRFCF)内有效。IN = 运放本身输入的电流噪声,算inverting的输入。4kT = 1.6E – 21J at T = 290°K 根据这个公式计算出等效的输入噪声电流后,就可以算出在 TIA 输出后 SNR 了。这里整理几个 TIA 运放在实际使用中经常遇到的问题:比如设计一个 20K 增益的放大链路,假设总的输入的寄生电容很大,10pF。根据上面的图可以看出,采用 GBW 最宽的 OPA847 进行设计,最宽稳定带宽只能在 50M 附近。输入 20n 的脉宽信号,10u 的幅度,得到的波形如下:根据公式算出 CF 的取值应该为 0.24p。加上后,电路如下:仿真得到:可以看到,振荡消失,只剩过冲。放大倍数也趋向正常。在高增益的场合,有可能反馈电阻自带的电容以及反馈走线带来的寄生电容都可以达到这么微小的电容值。所以需要依具体的测试结果来确定反馈是否要另外加电容。在光时域反射检测光纤状态的场合,输出上的 overshoot 可能会对测量结果产生很大影响,这就需要尽可能地减小 TIA 输出的 overshoot。如上图所示的结果,约有 10%的 overshoot,这对实际使用是不利的,需要消除。消除这种过冲最有效的方法是加大反馈电容,但是这样带来的一个直接后果是带宽减小。如上面的案例,在输出有 overshoot 的情况下,原始频响为: -3dB 带宽有 40M 左右。但是也可以看到,20nS 的脉冲情况下,其输出有点被滤除,增益减小了。TIA 运放在作电流放大使用时需要注意带宽和增益的折中,以及平衡性和带宽的折中。而同时又得兼顾噪声的贡献,所以需要综合考虑以上的各项指标。推荐阅读
【关注】查看往期精彩
▼