推荐2篇《数量经济技术经济研究》上含Bartik 工具变量法论文(附代码复现)

学术   教育   2024-12-14 23:17   陕西  

    

推荐2篇《数量经济技术经济研究》上含Bartik 工具变量法论文(附代码复现)

论文1、数字化进程与线上市场配置效率——基于平台流量倾斜的微观证据

《数量经济技术经济研究》2023年第6期主要计量方法命集合(合成DID、强度DID、断点等) (qq.com)里面提到《数字化进程与线上市场配置效率——基于平台流量倾斜的微观证据》这篇文章主要使用到了如下命令:

  • 结果输出:logout+esttab

  • xtreg、regife、areg、xtbalance

  • 培根分解:培根分解

而该文里面就使用到了Bartik 工具变量法,对应命令为ivreghdfe,选取的第一个工具变量是不含酒店自身的各城市特牌酒店占比的均值(digital_city),在这个工具变量基础上进一步构造 Bartik 工具变量(digital_bartik),用 digital_city 初始值乘以每日全国 酒店中特牌酒店占比的变化程度来表示,第三个工具变量是各城市的邮局数量(post)。

代码命令为:

ivreghdfe occupancy (digital=digital_city) $cx i.hotel i.date, absorb(i.city#i.date) cluster(city) 
est store m1
ivreghdfe occupancy (digital=digital_bartik) $cx i.hotel i.date, absorb(i.city#i.date) cluster(city) 
est store m2
ivreghdfe occupancy (digital=post) $cx i.hotel i.date, absorb(i.city#i.date) cluster(city) 
est store m3
ivreghdfe occupancy (digital=digital_city digital_bartik post) $cx i.hotel i.date, absorb(i.city#i.date) cluster(city) 
est store m4
logout, save(mylogout2) word replace:   ///
esttab m1 m2 m3 m4, star(* 0.1 ** 0.05 *** 0.01) ///
     b(%6.3f) se(%6.3f) compress nogap drop(_I* o._* *.date) stats(Cluster N r2_a)

2:经济集聚对管理者薪酬的影响及机制研究

2023年第3期《数量经济技术经济研究》目录及计量方法汇总表(DID、DDD等) 里面提到,《经济集聚对管理者薪酬的影响及机制研究》这篇文章里面用到了Bartik 工具变量法,详见:

相关结果为:




下面使用Stata软件进行操作,结果为:

 *增速,单变量回归,有固定效应
. ivreg2  Y1  ( X1 = IV ) i.year i.Industry ,r 

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

                                                      Number of obs =    17456
                                                      F( 56, 17399) =     2.38
                                                      Prob > F      =   0.0000
Total (centered) SS     =  18776.43889                Centered R2   =   0.0102
Total (uncentered) SS   =  19992.20224                Uncentered R2 =   0.0704
Residual SS             =  18585.19477                Root MSE      =    1.032

------------------------------------------------------------------------------
             |               Robust
          Y1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          X1 |   .6725086    .212346     3.17   0.002      .256318    1.088699
             |
        year |
       2010  |   .1215809   .0298943     4.07   0.000     .0629891    .1801728
       2011  |   .0247482   .0273428     0.91   0.365    -.0288428    .0783391
       2012  |   .0014736   .0297414     0.05   0.960    -.0568184    .0597657
       2013  |   .0268862   .0318791     0.84   0.399    -.0355958    .0893681
       2014  |    .021012    .031433     0.67   0.504    -.0405955    .0826196
       2015  |   .1670464   .0405426     4.12   0.000     .0875844    .2465085
       2016  |   .0654678   .0336572     1.95   0.052    -.0004992    .1314347
       2017  |   .0865667   .0301613     2.87   0.004     .0274516    .1456818
       2018  |   .0524127   .0296073     1.77   0.077    -.0056165     .110442
       2019  |   .0727127   .0294299     2.47   0.013     .0150311    .1303943
             |
    Industry |
          2  |   .0125054   .0605393     0.21   0.836    -.1061494    .1311603
          4  |  -.0539559    .052427    -1.03   0.303    -.1567109    .0487992
          5  |  -.0091227    .058876    -0.15   0.877    -.1245176    .1062722
          6  |   .0089355   .0539559     0.17   0.868     -.096816    .1146871
          7  |  -.0573878   .0534388    -1.07   0.283    -.1621259    .0473503
          8  |  -.0396973   .0790597    -0.50   0.616    -.1946515     .115257
          9  |   .1754699   .0705695     2.49   0.013     .0371562    .3137835
         11  |    .011996   .0530465     0.23   0.821    -.0919733    .1159653
         12  |   .0428961   .0790939     0.54   0.588    -.1121251    .1979173
         13  |  -.0607549   .0959165    -0.63   0.526    -.2487478     .127238
         14  |   .1574894   .1093813     1.44   0.150     -.056894    .3718729
         15  |  -.1105923   .0987215    -1.12   0.263    -.3040829    .0828983
         16  |   .2603571   .3673752     0.71   0.479     -.459685    .9803993
         17  |   .1626157   .1344223     1.21   0.226    -.1008472    .4260786
         18  |  -.0286759   .0794236    -0.36   0.718    -.1843433    .1269916
         19  |   -.040706   .0663305    -0.61   0.539    -.1707114    .0892995
        313  |   .1118545   .0849387     1.32   0.188    -.0546224    .2783314
        314  |   .1014908   .0913997     1.11   0.267    -.0776493     .280631
        315  |   .0041538   .0664088     0.06   0.950    -.1260051    .1343128
        317  |   .0784468   .0794775     0.99   0.324    -.0773262    .2342198
        318  |   .0434977   .0871051     0.50   0.618    -.1272251    .2142205
        319  |  -.0285495   .1123599    -0.25   0.799    -.2487708    .1916717
        320  |   .3783992   .2608969     1.45   0.147    -.1329492    .8897477
        321  |   .5293559   .2492355     2.12   0.034     .0408632    1.017849
        322  |   .1406209   .0994893     1.41   0.158    -.0543745    .3356164
        323  |   .5128822    .256287     2.00   0.045     .0105689    1.015195
        324  |   .0192642   .1568947     0.12   0.902    -.2882437    .3267722
        325  |   .1921242   .1109015     1.73   0.083    -.0252388    .4094873
        326  |    .067002   .0560329     1.20   0.232    -.0428204    .1768245
        327  |   .1453782    .061058     2.38   0.017     .0257067    .2650498
        328  |   .1837576   .1214622     1.51   0.130    -.0543039    .4218191
        329  |   .0930746   .0752854     1.24   0.216    -.0544821    .2406313
        330  |   .1009524   .0688623     1.47   0.143    -.0340152      .23592
        331  |   .0272065    .065406     0.42   0.677    -.1009868    .1553999
        332  |   .1012703   .0759436     1.33   0.182    -.0475764     .250117
        333  |   .1472191   .0888603     1.66   0.098    -.0269439     .321382
        334  |  -.0295451   .0567058    -0.52   0.602    -.1406865    .0815963
        335  |   .0763704   .0624297     1.22   0.221    -.0459895    .1987304
        336  |  -.0035003   .0581825    -0.06   0.952     -.117536    .1105354
        337  |   .0028065   .0684146     0.04   0.967    -.1312837    .1368966
        338  |   .1241643   .0627826     1.98   0.048     .0011127     .247216
        339  |   .1042159    .056523     1.84   0.065    -.0065672    .2149989
        340  |  -.0133766   .0881525    -0.15   0.879    -.1861523    .1593991
        341  |   .0408389   .0957528     0.43   0.670    -.1468331     .228511
        342  |  -.0750502   .1915176    -0.39   0.695    -.4504179    .3003174
             |
       _cons |   .1097764   .0513252     2.14   0.032     .0091809    .2103719
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):           3056.922
                                                   Chi-sq(1) P-val =    0.0000
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):              4.1e+04
                         (Kleibergen-Paap rk Wald F statistic):        1.2e+04
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         X1
Included instruments: 2010.year 2011.year 2012.year 2013.year 2014.year
                      2015.year 2016.year 2017.year 2018.year 2019.year
                      2.Industry 4.Industry 5.Industry 6.Industry 7.Industry
                      8.Industry 9.Industry 11.Industry 12.Industry 13.Industry
                      14.Industry 15.Industry 16.Industry 17.Industry
                      18.Industry 19.Industry 313.Industry 314.Industry
                      315.Industry 317.Industry 318.Industry 319.Industry
                      320.Industry 321.Industry 322.Industry 323.Industry
                      324.Industry 325.Industry 326.Industry 327.Industry
                      328.Industry 329.Industry 330.Industry 331.Industry
                      332.Industry 333.Industry 334.Industry 335.Industry
                      336.Industry 337.Industry 338.Industry 339.Industry
                      340.Industry 341.Industry 342.Industry
Excluded instruments: IV
------------------------------------------------------------------------------

. est store m1


end of do-file

do "C:\Users\Metrics\AppData\Local\Temp\STDd94_000000.tmp"

. *增速,有控制变量,有固定效应
. ivreg2  Y1  $CV1 ( X1 = IV ) i.year i.Industry ,r 

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

                                                      Number of obs =    17456
                                                      F( 70, 17385) =     5.13
                                                      Prob > F      =   0.0000
Total (centered) SS     =  18776.43889                Centered R2   =   0.0314
Total (uncentered) SS   =  19992.20224                Uncentered R2 =   0.0903
Residual SS             =  18186.62419                Root MSE      =    1.021

------------------------------------------------------------------------------
             |               Robust
          Y1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          X1 |   .6170367   .2261933     2.73   0.006      .173706    1.060367
          C1 |   .4410059    .050592     8.72   0.000     .3418474    .5401644
          C2 |   1.563778   .2001686     7.81   0.000     1.171455    1.956101
          C3 |   .5379895   .1397377     3.85   0.000     .2641086    .8118704
          C4 |  -.0535267   .0188274    -2.84   0.004    -.0904277   -.0166257
          C9 |   .8641802   .6437339     1.34   0.179    -.3975151    2.125875
         C10 |   .0053687   .0076242     0.70   0.481    -.0095744    .0203118
         C11 |   .0017653   .0014389     1.23   0.220    -.0010549    .0045854
         C12 |  -.1519457   .0177583    -8.56   0.000    -.1867512   -.1171401
         C13 |   .0012924   .0047378     0.27   0.785    -.0079935    .0105783
         C14 |    .054032   .1541004     0.35   0.726    -.2479992    .3560632
         C15 |   .0009454   .0230391     0.04   0.967    -.0442104    .0461013
       C1601 |  -.0055113   .0019027    -2.90   0.004    -.0092405   -.0017822
         C17 |  -.0104114   .0110692    -0.94   0.347    -.0321066    .0112839
         C18 |   .0036851   .0064065     0.58   0.565    -.0088714    .0162415
             |
        year |
       2010  |   .1211879   .0303007     4.00   0.000     .0617997    .1805761
       2011  |   .0456823   .0277976     1.64   0.100       -.0088    .1001647
       2012  |    .033123   .0304946     1.09   0.277    -.0266454    .0928914
       2013  |   .0478573   .0320974     1.49   0.136    -.0150525    .1107671
       2014  |   .0348515   .0319909     1.09   0.276    -.0278495    .0975526
       2015  |   .1557936   .0414453     3.76   0.000     .0745623    .2370248
       2016  |   .0569625   .0348233     1.64   0.102      -.01129     .125215
       2017  |   .1000404   .0334688     2.99   0.003     .0344427     .165638
       2018  |   .0908967   .0340145     2.67   0.008     .0242295    .1575639
       2019  |   .1069847   .0378384     2.83   0.005     .0328227    .1811467
             |
    Industry |
          2  |   .0710487   .0601274     1.18   0.237    -.0467988    .1888963
          4  |   .0131615   .0523102     0.25   0.801    -.0893646    .1156876
          5  |  -.0120179   .0588426    -0.20   0.838    -.1273473    .1033115
          6  |   .0269562   .0534309     0.50   0.614    -.0777665    .1316788
          7  |   .0282931   .0532636     0.53   0.595    -.0761016    .1326879
          8  |   .0204934   .0789159     0.26   0.795    -.1341789    .1751657
          9  |   .1470831   .0698988     2.10   0.035      .010084    .2840822
         11  |  -.0019466   .0528556    -0.04   0.971    -.1055416    .1016484
         12  |   .0416995   .0783237     0.53   0.594    -.1118121    .1952111
         13  |  -.0620064   .0957479    -0.65   0.517    -.2496689    .1256561
         14  |   .1532148   .1074007     1.43   0.154    -.0572867    .3637163
         15  |  -.1076664   .1055606    -1.02   0.308    -.3145614    .0992286
         16  |   .2522736   .3488819     0.72   0.470    -.4315223    .9360695
         17  |   .0353926   .1454049     0.24   0.808    -.2495957    .3203808
         18  |     .01166   .0793264     0.15   0.883    -.1438168    .1671368
         19  |  -.0198063   .0659464    -0.30   0.764    -.1490589    .1094463
        313  |    .067221   .0828063     0.81   0.417    -.0950764    .2295183
        314  |   .1048965   .0913048     1.15   0.251    -.0740577    .2838506
        315  |   .0468403   .0661105     0.71   0.479    -.0827338    .1764144
        317  |   .0774775    .078528     0.99   0.324    -.0764347    .2313896
        318  |   .0030159   .0860991     0.04   0.972    -.1657354    .1717671
        319  |  -.0652098   .1114831    -0.58   0.559    -.2837126     .153293
        320  |   .3267702   .2576298     1.27   0.205     -.178175    .8317154
        321  |   .4320583   .2456018     1.76   0.079    -.0493124     .913429
        322  |   .1569924   .0989472     1.59   0.113    -.0369406    .3509254
        323  |   .4517886   .2549762     1.77   0.076    -.0479556    .9515329
        324  |  -.0412193   .1577759    -0.26   0.794    -.3504544    .2680157
        325  |   .2401682    .106864     2.25   0.025     .0307186    .4496177
        326  |    .076578   .0550212     1.39   0.164    -.0312616    .1844176
        327  |   .1243334   .0598882     2.08   0.038     .0069546    .2417122
        328  |   .1518397   .1202955     1.26   0.207    -.0839351    .3876145
        329  |   .0879871    .074459     1.18   0.237    -.0579497     .233924
        330  |   .0965131   .0674135     1.43   0.152     -.035615    .2286412
        331  |   .1073542    .064149     1.67   0.094    -.0183754    .2330838
        332  |   .1056847   .0745504     1.42   0.156    -.0404314    .2518008
        333  |    .103763   .0889819     1.17   0.244    -.0706383    .2781642
        334  |  -.0137876   .0560447    -0.25   0.806    -.1236332    .0960581
        335  |   .0859808   .0610969     1.41   0.159    -.0337669    .2057285
        336  |  -.0037206   .0574649    -0.06   0.948    -.1163498    .1089086
        337  |    .043809    .066374     0.66   0.509    -.0862817    .1738997
        338  |   .0899456   .0620067     1.45   0.147    -.0315853    .2114764
        339  |   .0813804   .0556272     1.46   0.143    -.0276469    .1904077
        340  |  -.0408944   .0882156    -0.46   0.643    -.2137938    .1320051
        341  |  -.0238672   .0971233    -0.25   0.806    -.2142254     .166491
        342  |  -.0887995   .1908112    -0.47   0.642    -.4627825    .2851835
             |
       _cons |   .3717256   .1484747     2.50   0.012     .0807205    .6627306
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):           3172.597
                                                   Chi-sq(1) P-val =    0.0000
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):              3.6e+04
                         (Kleibergen-Paap rk Wald F statistic):        1.1e+04
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         X1
Included instruments: C1 C2 C3 C4 C9 C10 C11 C12 C13 C14 C15 C1601 C17 C18
                      2010.year 2011.year 2012.year 2013.year 2014.year
                      2015.year 2016.year 2017.year 2018.year 2019.year
                      2.Industry 4.Industry 5.Industry 6.Industry 7.Industry
                      8.Industry 9.Industry 11.Industry 12.Industry 13.Industry
                      14.Industry 15.Industry 16.Industry 17.Industry
                      18.Industry 19.Industry 313.Industry 314.Industry
                      315.Industry 317.Industry 318.Industry 319.Industry
                      320.Industry 321.Industry 322.Industry 323.Industry
                      324.Industry 325.Industry 326.Industry 327.Industry
                      328.Industry 329.Industry 330.Industry 331.Industry
                      332.Industry 333.Industry 334.Industry 335.Industry
                      336.Industry 337.Industry 338.Industry 339.Industry
                      340.Industry 341.Industry 342.Industry
Excluded instruments: IV
------------------------------------------------------------------------------

. est store m2

. *结构,单变量回归,有固定效应
. ivreg2  Y2  ( X1 = IV ) i.year i.Industry ,r 

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

                                                      Number of obs =    17456
                                                      F( 56, 17399) =    12.21
                                                      Prob > F      =   0.0000
Total (centered) SS     =  477.2644587                Centered R2   =   0.0346
Total (uncentered) SS   =  501.8215095                Uncentered R2 =   0.0819
Residual SS             =  460.7456053                Root MSE      =    .1625

------------------------------------------------------------------------------
             |               Robust
          Y2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          X1 |   .1670136   .0332341     5.03   0.000     .1018759    .2321513
             |
        year |
       2010  |    .001188   .0029923     0.40   0.691    -.0046768    .0070528
       2011  |   .0022476   .0030485     0.74   0.461    -.0037273    .0082226
       2012  |   .0132255    .003904     3.39   0.001     .0055738    .0208772
       2013  |    .021037   .0044296     4.75   0.000     .0123552    .0297189
       2014  |   .0293173   .0046499     6.30   0.000     .0202037    .0384309
       2015  |   .0489674   .0055681     8.79   0.000      .038054    .0598807
       2016  |   .0395976   .0050459     7.85   0.000     .0297079    .0494874
       2017  |   .0434521   .0049567     8.77   0.000     .0337372    .0531671
       2018  |   .0428529   .0045765     9.36   0.000     .0338831    .0518227
       2019  |   .0444201   .0045664     9.73   0.000     .0354702      .05337
             |
    Industry |
          2  |   -.010236   .0087481    -1.17   0.242     -.027382      .00691
          4  |  -.0132438   .0083741    -1.58   0.114    -.0296568    .0031692
          5  |   .0045767   .0100594     0.45   0.649    -.0151394    .0242929
          6  |   .0015924   .0086435     0.18   0.854    -.0153486    .0185333
          7  |  -.0111319   .0086495    -1.29   0.198    -.0280847    .0058209
          8  |  -.0171701   .0096465    -1.78   0.075    -.0360768    .0017366
          9  |   .0562214   .0117725     4.78   0.000     .0331478     .079295
         11  |  -.0048733   .0085414    -0.57   0.568    -.0216141    .0118674
         12  |   .0054013   .0140156     0.39   0.700    -.0220688    .0328714
         13  |   .0353429   .0228982     1.54   0.123    -.0095368    .0802225
         14  |   .0234943   .0160451     1.46   0.143    -.0079535    .0549422
         15  |   .0018643   .0080176     0.23   0.816      -.01385    .0175785
         16  |  -.0370811   .0083173    -4.46   0.000    -.0533827   -.0207795
         17  |  -.0001797   .0291625    -0.01   0.995    -.0573371    .0569778
         18  |  -.0197338   .0103137    -1.91   0.056    -.0399484    .0004807
         19  |  -.0057408   .0093605    -0.61   0.540    -.0240871    .0126055
        313  |   .0194871   .0127414     1.53   0.126    -.0054857    .0444598
        314  |   .0170134   .0148413     1.15   0.252     -.012075    .0461018
        315  |   -.008166   .0095393    -0.86   0.392    -.0268626    .0105307
        317  |   .0120177   .0119321     1.01   0.314    -.0113687     .035404
        318  |   .0015413   .0124345     0.12   0.901    -.0228299    .0259125
        319  |   .0493172    .028916     1.71   0.088    -.0073571    .1059914
        320  |   .1351639     .04401     3.07   0.002      .048906    .2214218
        321  |   .1567864   .0411135     3.81   0.000     .0762055    .2373673
        322  |    .032652   .0165003     1.98   0.048     .0003119     .064992
        323  |   .0289509   .0267591     1.08   0.279     -.023496    .0813977
        324  |   .0235132   .0278303     0.84   0.398    -.0310332    .0780596
        325  |   .0295713    .017366     1.70   0.089    -.0044654     .063608
        326  |   .0198447   .0093314     2.13   0.033     .0015554     .038134
        327  |   .0228359   .0096709     2.36   0.018     .0038813    .0417905
        328  |   .0327189   .0186689     1.75   0.080    -.0038714    .0693092
        329  |   .0180499   .0125935     1.43   0.152     -.006633    .0427327
        330  |   .0489335   .0126715     3.86   0.000     .0240978    .0737692
        331  |  -.0070441   .0090571    -0.78   0.437    -.0247957    .0107075
        332  |   .0150278   .0113579     1.32   0.186    -.0072333    .0372888
        333  |    .026679   .0136463     1.96   0.051    -.0000672    .0534253
        334  |    .009185   .0097455     0.94   0.346    -.0099158    .0282859
        335  |   .0155683   .0101355     1.54   0.125    -.0042969    .0354335
        336  |  -.0027172   .0092278    -0.29   0.768    -.0208033     .015369
        337  |  -.0077879   .0099652    -0.78   0.435    -.0273193    .0117436
        338  |   .0262637   .0099602     2.64   0.008     .0067421    .0457854
        339  |   .0329111   .0094846     3.47   0.001     .0143216    .0515006
        340  |   .0429468   .0209675     2.05   0.041     .0018512    .0840423
        341  |   .0034322   .0145753     0.24   0.814    -.0251347    .0319992
        342  |   .0267237   .0404131     0.66   0.508    -.0524845     .105932
             |
       _cons |   -.013928   .0079483    -1.75   0.080    -.0295064    .0016504
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):           3056.922
                                                   Chi-sq(1) P-val =    0.0000
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):              4.1e+04
                         (Kleibergen-Paap rk Wald F statistic):        1.2e+04
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         X1
Included instruments: 2010.year 2011.year 2012.year 2013.year 2014.year
                      2015.year 2016.year 2017.year 2018.year 2019.year
                      2.Industry 4.Industry 5.Industry 6.Industry 7.Industry
                      8.Industry 9.Industry 11.Industry 12.Industry 13.Industry
                      14.Industry 15.Industry 16.Industry 17.Industry
                      18.Industry 19.Industry 313.Industry 314.Industry
                      315.Industry 317.Industry 318.Industry 319.Industry
                      320.Industry 321.Industry 322.Industry 323.Industry
                      324.Industry 325.Industry 326.Industry 327.Industry
                      328.Industry 329.Industry 330.Industry 331.Industry
                      332.Industry 333.Industry 334.Industry 335.Industry
                      336.Industry 337.Industry 338.Industry 339.Industry
                      340.Industry 341.Industry 342.Industry
Excluded instruments: IV
------------------------------------------------------------------------------

. est store m3

. *结构,有控制变量,有固定效应
. ivreg2  Y2  $CV2 ( X1 = IV ) i.year i.Industry ,r 

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

                                                      Number of obs =    17456
                                                      F( 70, 17385) =    10.36
                                                      Prob > F      =   0.0000
Total (centered) SS     =  477.2644587                Centered R2   =   0.0577
Total (uncentered) SS   =  501.8215095                Uncentered R2 =   0.1038
Residual SS             =   449.718548                Root MSE      =    .1605

------------------------------------------------------------------------------
             |               Robust
          Y2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          X1 |   .1364008    .035294     3.86   0.000     .0672258    .2055758
          C5 |   .0036657    .001342     2.73   0.006     .0010354     .006296
          C6 |   .2021486   .0243317     8.31   0.000     .1544593    .2498378
          C7 |   .0286739   .0071352     4.02   0.000     .0146892    .0426587
          C8 |   .0040372   .0026554     1.52   0.128    -.0011672    .0092417
          C9 |  -.0062527   .0993852    -0.06   0.950    -.2010442    .1885388
         C10 |   .0006671   .0013652     0.49   0.625    -.0020087    .0033428
         C11 |  -.0013504    .000229    -5.90   0.000    -.0017992   -.0009015
         C12 |  -.0381238   .0027782   -13.72   0.000     -.043569   -.0326785
         C13 |   .0003337    .000726     0.46   0.646    -.0010893    .0017566
         C14 |  -.0055895   .0254805    -0.22   0.826    -.0555303    .0443513
         C15 |  -.0002006   .0036733    -0.05   0.956    -.0074002    .0069991
       C1601 |  -.0007935   .0002946    -2.69   0.007    -.0013709   -.0002161
         C17 |   .0001694   .0017063     0.10   0.921    -.0031749    .0035138
         C18 |   .0003206   .0010033     0.32   0.749    -.0016458     .002287
             |
        year |
       2010  |  -.0022385   .0032387    -0.69   0.489    -.0085863    .0041092
       2011  |    .000173   .0032635     0.05   0.958    -.0062234    .0065694
       2012  |    .011573   .0040627     2.85   0.004     .0036103    .0195356
       2013  |   .0191204   .0045693     4.18   0.000     .0101646    .0280761
       2014  |   .0279032    .004774     5.84   0.000     .0185462    .0372601
       2015  |   .0488344   .0060901     8.02   0.000     .0368979    .0607708
       2016  |   .0383213   .0054794     6.99   0.000     .0275819    .0490606
       2017  |   .0412816   .0054632     7.56   0.000     .0305739    .0519893
       2018  |   .0427632   .0053176     8.04   0.000     .0323409    .0531856
       2019  |   .0431146   .0059922     7.20   0.000     .0313702    .0548591
             |
    Industry |
          2  |  -.0060952   .0088273    -0.69   0.490    -.0233964    .0112061
          4  |  -.0009559   .0083137    -0.11   0.908    -.0172504    .0153386
          5  |  -.0057215   .0100531    -0.57   0.569    -.0254252    .0139821
          6  |   .0052491   .0084927     0.62   0.537    -.0113962    .0218944
          7  |  -.0010199   .0086271    -0.12   0.906    -.0179288    .0158889
          8  |   .0017083    .009537     0.18   0.858    -.0169838    .0204004
          9  |   .0478268   .0116334     4.11   0.000     .0250257    .0706279
         11  |   -.006693   .0084878    -0.79   0.430    -.0233288    .0099428
         12  |   .0024789   .0139112     0.18   0.859    -.0247865    .0297442
         13  |   .0262399   .0227689     1.15   0.249    -.0183863    .0708661
         14  |   .0254903   .0156916     1.62   0.104    -.0052646    .0562451
         15  |   .0008621   .0112908     0.08   0.939    -.0212674    .0229916
         16  |  -.0323139     .01319    -2.45   0.014    -.0581659    -.006462
         17  |  -.0226382   .0297202    -0.76   0.446    -.0808888    .0356124
         18  |  -.0119395   .0103461    -1.15   0.248    -.0322175    .0083385
         19  |   .0041952   .0092186     0.46   0.649    -.0138729    .0222634
        313  |   .0079418   .0124795     0.64   0.525    -.0165176    .0324013
        314  |    .012852   .0147049     0.87   0.382     -.015969    .0416731
        315  |  -.0033457   .0095747    -0.35   0.727    -.0221118    .0154203
        317  |   .0067821   .0117399     0.58   0.563    -.0162277    .0297918
        318  |  -.0182969   .0124644    -1.47   0.142    -.0427267    .0061328
        319  |   .0290315   .0283894     1.02   0.306    -.0266107    .0846738
        320  |    .119361   .0434385     2.75   0.006      .034223     .204499
        321  |   .1225842   .0409974     2.99   0.003     .0422308    .2029376
        322  |   .0307505   .0160735     1.91   0.056     -.000753    .0622541
        323  |   .0033912   .0267812     0.13   0.899     -.049099    .0558813
        324  |  -.0006945   .0273671    -0.03   0.980     -.054333    .0529441
        325  |   .0403943    .016995     2.38   0.017     .0070847    .0737038
        326  |   .0174831   .0091451     1.91   0.056     -.000441    .0354073
        327  |    .013504   .0094313     1.43   0.152    -.0049809     .031989
        328  |   .0253812   .0183226     1.39   0.166    -.0105305     .061293
        329  |   .0069911   .0123739     0.56   0.572    -.0172613    .0312435
        330  |   .0449928   .0122535     3.67   0.000     .0209763    .0690093
        331  |   .0012554   .0091784     0.14   0.891    -.0167339    .0192447
        332  |   .0112031   .0111859     1.00   0.317    -.0107209    .0331271
        333  |   .0100955   .0135229     0.75   0.455    -.0164088    .0365998
        334  |    .007583   .0095524     0.79   0.427    -.0111392    .0263053
        335  |   .0115407   .0098761     1.17   0.243    -.0078161    .0308975
        336  |  -.0103463   .0091289    -1.13   0.257    -.0282386    .0075459
        337  |   .0038984   .0099107     0.39   0.694    -.0155263     .023323
        338  |   .0114643   .0098431     1.16   0.244    -.0078279    .0307565
        339  |   .0269265   .0093256     2.89   0.004     .0086487    .0452042
        340  |   .0326984   .0203514     1.61   0.108    -.0071897    .0725865
        341  |  -.0164421   .0146474    -1.12   0.262    -.0451505    .0122663
        342  |   .0138231   .0414234     0.33   0.739    -.0673654    .0950116
             |
       _cons |  -.0438298   .0336728    -1.30   0.193    -.1098274    .0221677
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):           3173.150
                                                   Chi-sq(1) P-val =    0.0000
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):              3.6e+04
                         (Kleibergen-Paap rk Wald F statistic):        1.1e+04
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         X1
Included instruments: C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C1601 C17 C18
                      2010.year 2011.year 2012.year 2013.year 2014.year
                      2015.year 2016.year 2017.year 2018.year 2019.year
                      2.Industry 4.Industry 5.Industry 6.Industry 7.Industry
                      8.Industry 9.Industry 11.Industry 12.Industry 13.Industry
                      14.Industry 15.Industry 16.Industry 17.Industry
                      18.Industry 19.Industry 313.Industry 314.Industry
                      315.Industry 317.Industry 318.Industry 319.Industry
                      320.Industry 321.Industry 322.Industry 323.Industry
                      324.Industry 325.Industry 326.Industry 327.Industry
                      328.Industry 329.Industry 330.Industry 331.Industry
                      332.Industry 333.Industry 334.Industry 335.Industry
                      336.Industry 337.Industry 338.Industry 339.Industry
                      340.Industry 341.Industry 342.Industry
Excluded instruments: IV
------------------------------------------------------------------------------

. est store m4

3、Bartik 工具变量命令ssaggregate

Bartik 工具变量的 Stata 命令 ssaggregate

下载安装方法为:

. ssc install ssaggregate, replace
checking ssaggregate consistency and verifying not already installed...
installing into c:\ado\plus\...
installation complete.

查看帮助文件:

help  ssaggregate


数量经济学
见证计量经济学发展,更懂计量更懂你!
 最新文章