Light | 液晶光谱单透镜:光学成像与光谱探测功能“合二为一”

学术   科学   2024-09-17 11:54   吉林  

Banner 推广

稿 | 课题组撰稿

导读

近日,武汉大学郑国兴、李子乐团队联合南京大学陆延青、陈鹏团队提出了基于光谱单透镜的新型高光谱成像技术。该技术利用液晶的多维度光波操控能力,将光学成像与光谱探测功能合二为一,打破了传统高光谱相机中“透镜+光谱仪”级联的限制,为解决微型化光谱成像系统中的“空间—光谱”性能相互制约难题提供了新思路。这一成果将进一步促进高光谱成像技术在便携式传感设备中的应用。

该研究成果以“Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging”为题在线发表在光学顶尖期刊《Light:Science & Applications》。李子乐研究员、陈鹏副教授和郑国兴教授为本文通讯作者。研究生周舟、张逸恒、谢颖欣为本文共同第一作者,鹏城实验室余少华院士、南京大学陆延青教授、香港大学张霜教授给予了重要的指导和建议。该工作得到了国家重点研发计划、国家自然科学基金等项目支持。

研究背景与挑战

信息获取的维度直接影响着人类对世界的理解和认知。将光波作为载体,以感知世界的信息一直是光学中的重要研究方向。早在17世纪,牛顿就提出了透镜成像公式,并进行了著名的棱镜色散实验,从而开启了透镜和光谱仪获取空间和光谱信息的研究。通过级联这两种器件,可以同时获取空间和光谱数据,从而得到丰富的信息。然而,这种级联方式会引入系统体积、光谱探测性能以及成像质量之间的制约,阻碍高光谱成像系统迈向便携性和小型化。这一问题的本质在于光波调控器件的能力受限:光学成像谱探测功能依赖于不同的光波调控机制(相位调控和光谱调控),二者难以通过单片光学元件实现。因此,为了破除微型化高光谱成像系统中的性能制约,需要探索新的多维度光波调控机理。

基于光谱单透镜的微型化光谱成像

传统透镜仅能获取物体的强度分布信息,研究团队设想:是否可以设计一种多功能透镜以获取物体光谱分布?为此,他们提出了“光谱单透镜”的概念。为了在保持原有成像功能的同时,探测物体的光谱信息,光谱单透镜需要具备两个特征:(1) 在宽光谱范围内具备精确的相位控制,以保证高质量成像;(2) 在不同波长下的聚焦特性(如聚焦效率等)差异尽可能大,从而更好地提取光谱信息。

研究团队发现,平面液晶光学这一平台可以完美契合光谱单透镜所需的光波调控。在液晶材料中,分子通常呈现一定程度的有序排列,其平均取向方向可以由指向矢描述。如图1所示,液晶的指向矢由两个几何上完全独立的角度——方位角θ和极角α——描述。通过深入研究液晶材料对光波的调控机制,研究团队发现这两种角度对应两种不同的光波操控能力。其中极角影响液晶的等效双折射率,从而导致其光谱响应的变化。而通过控制方位角,则可以引入几何相位(又称:PB相位),操控入射光波的波前。由于这两种光波操控取决于液晶的不同几何参数,它们是完全解耦,互不影响的。因此,可以通过光控取向技术控制液晶的方位角分布,进行平面化取向,使其具有透镜聚焦功能。与此同时,在器件上施加电压改变液晶的极角,控制透镜的透射光谱,从而得到同时具有宽带聚焦光谱可调特性的平面透镜

图1.  液晶器件对光波光谱和相位的结构操控。a. 液晶指向矢示意图。b. 光谱调控(只与极角α有关)。c. 相位调控(只与方位角θ有关)。

基于以上光波调控特性,团队建立了液晶光谱透镜(LC-SLENS)的成像模型,并提出了图2所示的光谱数据立方体重构方法。通过对LC-SLENS施加不同电压,获取多帧不同光谱响应调制下的强度图像,随后通过凸优化算法逐点恢复不同像素的光谱曲线,并通过解卷积实现图像去模糊,从而得到待测目标的光谱数据立方体。

图2. 基于液晶光谱透镜的光谱数据立方体获取。a 初始数据采集。b 光谱图像重构。

研究团队加工了液晶透镜,并对其进行了性能表征(图3)。实验结果表明,该透镜的光谱响应可以通过外加电压灵活调节,且不影响透镜的聚焦功能。得益于几何相位的宽带特性和特殊相位设计,透镜在整个工作波段范围(550 nm – 700 nm)内都具有较好的聚焦能力。

图3.  液晶光谱透镜性能表征。a. 器件实物图。b. 不同电压下透镜的光谱响应。c. 不同波长下的点扩展函数。

研究团队进一步将液晶光谱透镜与图像传感器结合,以一种极简的方式构建了高光谱相机。只需将标准相机中的透镜替换为液晶光谱透镜,并对系统的特性进行一次标定,即可获取待测目标的光谱信息。他们采用颜色板与USAF 1951分辨率板进行了高光谱相机性能测试(图4)。其中,重构的光谱保真度大于95%,系统空间分辨率达到1.7倍衍射极限,验证了基于光谱单透镜实现高光谱成像的有效性。

图4. 光谱成像测试结果。a-c. 颜色板光谱成像结果。d-f. 分辨率板光谱成像结果。

前景展望

研究团队所提出的液晶光谱透镜,其功能区厚度仅数微米,具备小型化、轻量化优势;另外,其驱动电压低于10V,可与众多电子仪器设备兼容(无需额外增加配套的驱动硬件),形成“光谱透镜+”的商业应用模式;与基于复杂昂贵半导体工艺(电子束或光刻机光刻、刻蚀、材料生长等)的超表面、二维材料等微型化光谱技术相比,液晶器件的批量制备技术相对成熟,其成本甚至低至数十元,因此具备较高的潜在商业应用价值。总而言之,这项工作提出的“光学成像+光谱探测”功能“二合一”的液晶光谱单透镜,使得高光谱相机在小型化、低成本化的同时具备高性能。该工作为微型化光谱成像提供了新思路,为便携式智能传感在家庭诊断、消费电子等领域中的广泛应用开辟新的道路。
论文信息
Zhou, Z., Zhang, Y., Xie, Y. et al. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. Light Sci Appl 13, 242 (2024).
https://doi.org/10.1038/s41377-024-01608-w



编辑 | 郭巳秋
 欢迎课题组投稿——新闻稿

文章转载/商务合作/课题组投稿,微信:447882024




高被引文章统计

如下数据来自Web of Science,Light: Science & Applications的高被引文章数量在国内同类期刊中稳居领军地位。截至目前:


超过2000次引用的文章有1

https://doi.org/10.1038/lsa.2014.99

超过1000次引用的文章有3
https://doi.org/10.1038/s41377-019‍-0194-2
https://doi.org/10.1038/lsa.2014.30
超过800次引用的文章有4
https://doi.org/10.1038/lsa.2016.133
超过700次引用的文章有8
https://doi.org/10.1038/lsa.2014.48
https://doi.org/10.1038/lsa.2017.141
https://doi.org/10.1038/lsa.2017.168
https://doi.org/10.1038/s41377-020-0341-9

超过600次引用的文章有9

https://doi.org/10.1038/lsa.2013.28

超过500次引用的文章有14
https://doi.org/10.1038/lsa.2015.67
https://doi.org/10.1038/lsa.2014.60
https://doi.org/10.1038/lsa.2013.26
https://doi.org/10.1038‍/lsa.2014.46
https://doi.org/10.1038/s41377-018-0078-x‍
超过400次引用的文章有30

https://doi.org/10.1038/lsa.2014.42

https://doi.org/10.1038/lsa.2016.17

https://doi.org/10.1038/lsa.2015.30

https://doi.org/10.1038/lsa.2015.97
‍https://doi.org/10.1038/s41377-020-0326-8
‍https://doi.org/10.1038/lsa.2015.131‍
‍https://doi.org/10.1038/s41377-021-00658-8
‍https://doi.org/10.1038/s41377-018-0060-7
https://doi.org/10.1038‍/lsa.201‍7.39‍
https://doi.org/10.1038/lsa.2016.76
https://doi.org/10.1038/lsa.2012.1
‍https://doi.org/10.1038/s41377-020-0264-5‍
https://doi.org/10.1038‍/lsa.20‍1‍7.146‍
‍https://doi.org/10.1038/s41377-020-0268-1
https://doi.org/10.1038/lsa.2014.94

https://doi.org/10.1038/s41377-019-0148-8

超过300次引用的文章有55
超过200次引用的文章有129
超过100次引用的文章有331

超过50次引用的文章有639



欢迎课题组投宣传稿

请扫码联系值班编辑





👇 关注我 👇 

点亮“”和“在看,文章更新不错过

LightScienceApplications
Light: Science \x26amp; Applications创刊于2012年3月29日,是由中科院长春光机所与英国自然出版集团(NPG)合作出版的全英文开放获取国际光学学术期刊,2013年10月先后被国际著名检索系统SCI 及Scopus收录
 最新文章