Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

科技   科技   2024-10-31 16:20   浙江  

全文链接:https://tecdat.cn/?p=33885


本文描述了帮助客户使用马尔可夫链蒙特卡洛(MCMC)方法通过贝叶斯方法估计基本的单变量随机波动模型,就像Kim等人(1998年)所做的那样点击文末“阅读原文”获取完整代码数据

相关视频


定义模型以及从条件后验中抽取样本的函数的代码也在Python脚本中提供。

%matplotlib inline
from __future__ import division
......

from src import sv

来自Kim等人(1998年)的经典单变量随机波动性模型,在此之后简称KSC,如下所示:

这里,yt代表某个资产的修正后平均收益,ht为对数波动率

示例

我们将对1981年10月1日至1985年6月28日期间的英镑/美元汇率查看文末了解数据免费获取方式进行建模。

ex = pd.read_excel('es.xls')
dta = np.l......
.iloc[1:]

endg = (dta['......
ean()) * 100

准拟然估计

估计该模型参数的一种方法是Harvey等人(1994年)的“准拟然估计法”,其中将log(ε^2_t)用与均值和方差相同的高斯随机变量来近似替换。

mod_QSV = sv.QL......
())

贝叶斯估计

KSC提供了一种使用贝叶斯技术估计该模型的替代方法;他们将log(ε^2_t)用高斯混合分布近似表示,使得:

 其中 st 是一个指示随机变量,定义为 P(st=i)=qi, i=1,…,K (K 是混合成分数目)。定义了 (qi,mi,v2i) 表示组成高斯分布的值如下所示。

# q_i, m_i, v_i^2
ksc_aras = np.array([......
)

在给定 stTt=1 的条件下,每个时间段的观测方程是由一个高斯噪声项定义的。

通过设置 K=7 是对 logε2t 进行很好近似的方法,Omori et al. (2007) 将其扩展到 K=10。

class TLDT(sm.t......
Model):
"""
时变局部线性确定性趋势
......

# 转换为对数平方,带有偏移量
endog = n.logenog**2+ offset

# 初始化基本模型
super(TVLLDT, self)._......
tationary')

# 设置观测方程的时变数组
self['o......
.nobs))

# 设置状态空间矩阵的固定分量
self['d......
0] = 1

def update......
7036, v_i^2)
self['o......
rams[1]
self['state_cov', 0, 0] = params[2]

先验分布

为了计算模型,我们需要为参数 θ 的先验分布进行特定的指定。下面的先验规范取自于 KSC。

σ2η 的先验分布

我们考虑共轭先验分布:

 其中我们将 σr=5 和 Sσ=0.01×σr=0.05。

ϕ 的先验分布

定义 ϕ∗=(ϕ+1)/2,我们对 ϕ∗ 指定一个先验分布:

 正如在 KSC 中讨论的那样,该先验分布在 (−1,1) 上支持随机波动性过程的平稳性。

设置 ϕ(1)=20 和 ϕ(2)=1.5 意味着 E[ϕ]=0.86。

最后:

μ 的先验分布

KSC 建议对 μ 设定一个模糊的先验分布(或者也可以稍微具有信息的先验分布,比如 μ∼N(0,10))。

从条件后验中采样

KSC 表明,在上述指定的先验条件下,我们可以按照以下方式从条件后验中采样:

采样 σ2η

条件后验分布为:

def draw_po......
or_params=(5, 0.05)):
sigma_r, S_sigma = prior_params

v1 = sig......
i * (states[0, :-1] - mu))**2)
delta1 = S_sigma + tmp1 + tmp

return ingammars(v1,scal=deta1)

采样 ϕ

我们可以应用 Metropolis 步骤:从 N(ϕ^,Vθ) 中生成一个提议值 ϕ∗

python

def g(phi, ......


# 先验分布对非平稳过程给予零权重
if np.abs(phi) >= 1:
ret......
2) / 2 * sigma2
tmp2 = 0.5 * np.log(1 - phi**2)

return n......

V_phi = sigma2 / tmp2

proposal ......
om.uniform() else phi

采样μ̂

条件后验分布为:

python

def draw_pos......
* (1 - phi)**2 + ......
)

return norm.r......
2_mu**0.5)

采样htTt=1̂

在混合指示符(用于生成时变观测方程矩阵)和参数条件下,可以通过通常的模拟平滑器对状态进行采样。

采样stTt=1̂

每个指示变量st只能取有限个离散值(因为它是一个指示变量,表示时间t时哪个混合分布处于活动状态)。KSC表明,可以从以下概率质量函数独立地采样混合指示符:

其中fN(y∗t∣a,b)表示均值为a,方差为b的高斯随机变量在y∗t处的概率密度。

def (mod states):
resid = od.nog[:, 0] - states[0]

# 构建均值 (nobs x 7), 方差 (7,), 先验概率 (7,)
means = ks_aram......
0]

# 调整维度以便广播计算
resid = np.repe......
[None, :], mod.nobs,
axis=0)

# 计算对数似然 (nobs x 7)
loglikelihoods = -0.5 * ((resi......
* variances))

# 得到(与后验(对数))成比例的值 (nobs x 7)
posterior_kernel = log......
ilities)

# 归一化得到实际后验概率
tmp = logsumxp(psterir_kernl,axis=1)
posterior_probabilitie......
d, states)

# 从后验中抽取样本
varaes = np.radom.niorm(ize=od.obs)
......
sample = np.argmax(tmp, axis=1)

return sample

MCMC

下面我们进行10,000次迭代以从后验中进行抽样。在下面展示结果时,我们将舍弃前5,000次迭代作为燃烧期,并且在剩下的5,000次迭代中,我们只保存每十次迭代的结果。然后从剩下的500次迭代中计算结果。


# 设置模型和模拟平滑器
md = TVLLT(eog)
mo.(0, sothr_stateTrue)
sim = md.siutin_sother()

# 模拟参数
nitertons = 10000
brn = 5000
tin = 10

# 存储轨迹
trae_sooted = np.eros((_iteations+ 1 mod.nobs))......

trce_sim2 = np.ers((n_iteations + 1, 1))

# 初始值 (p. 367)
trce_miing[0] = 0
[0] = 0.95
trace_sigma2[0] = 0.5
# 迭代
for s in range(1, n_teations + 1):
# 更新模型参数
mod.updat_ming(tace_mixing[s-1])......
# 模拟平滑
sim.smuate()......


# 抽取混合指标
trac_miing[s] = drawmixngmod states)

# 抽取参数
tra_phi[s] = (mod, sates, trace_phi[s-1], trace_mu[s-1], trace_sigma2[s-1])......

结果

下面我们给出参数的后验均值。我们还展示了相应的QMLE估计值。这些估计值与 ϕ 和 β 的后验均值相似,但是对于 ση² 的QMLE估计值约为贝叶斯方法的一半,可能表明准拟然方法的一个缺点。

# 参数的后验均值
menphi = n.men(trae_hi[burn:thin])......

print(' beta = %.5f' % npexp(rs_LSVparams[2] / 2))

由于参数ση²控制潜在随机波动率过程的方差,低估将抑制样本中波动率过程的变化。如下图所示

fig, ax = plt.subplots(f......

ax.legend();


点击标题查阅往期内容


【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享


左右滑动查看更多


01

02

03

04



最后,我们可能对参数的完全条件后验分布感兴趣。以下是这些分布,以及后验均值和QMLE估计值。

fig, axes = plt.subplots(1, 3, ......

axes[0].set(title=r'$\phi$', ylim=ylim)
axes[0].legend(loc='upper left')
......
axes[2].set(title=r'$\beta$', ylim=ylim);




数据获取


在公众号后台回复“汇率数”,可免费获取完整数据。



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据》。



本文中分析的数据分享到会员群,扫描下面二维码即可加群!




点击标题查阅往期内容

HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
马尔可夫Markov区制转移模型分析基金利率
马尔可夫区制转移模型Markov regime switching
时变马尔可夫区制转换MRS自回归模型分析经济时间序列
马尔可夫转换模型研究交通伤亡人数事故时间序列预测
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型分析汽车实验数据
stata马尔可夫Markov区制转移模型分析基金利率
PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列
R语言使用马尔可夫链对营销中的渠道归因建模
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
R语言隐马尔可夫模型HMM识别不断变化的股票市场条件
R语言中的隐马尔可夫HMM模型实例
用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)
Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型
MATLAB中的马尔可夫区制转移(Markov regime switching)模型
Matlab马尔可夫区制转换动态回归模型估计GDP增长率
R语言马尔可夫区制转移模型Markov regime switching
stata马尔可夫Markov区制转移模型分析基金利率
R语言如何做马尔可夫转换模型markov switching model
R语言隐马尔可夫模型HMM识别股市变化分析报告
R语言中实现马尔可夫链蒙特卡罗MCMC模型


拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章