python版的singler单细胞注释工具

科技   2024-11-27 13:26   广东  

 今天是生信星球陪你的第1023天


   

公众号里的文章大多数需要编程基础,如果因为代码看不懂,而跟不上正文的节奏,可以来找我学习,相当于给自己一个新手保护期。我的课程都是循环开课,点进去咨询微信↓

生信分析直播课程(每月初开一期,春节休一个月)

生信新手保护学习小组(每月两期)

单细胞陪伴学习小组(每月两期)

网上可以搜到大量的R语言singleR的代码和教程,但python版的就比较少啦,恭喜你找到了我。

1.文件读取

输入的数据是10X标准的三个文件
import singlecellexperiment as sce
import scanpy as sc
import os
print(os.listdir("01_data"))
['barcodes.tsv''genes.tsv''matrix.mtx']
用read_10x_mtx读取
adata = sc.read_10x_mtx("01_data/")
print(adata.shape)
(2700, 32738)

2. 质控

sc.pp.filter_cells(adata,min_genes=200)
sc.pp.filter_genes(adata,min_cells=3)
adata.var['mt']=adata.var_names.str.startswith('MT-')
sc.pp.calculate_qc_metrics(adata,qc_vars=['mt'],log1p=False,percent_top=None,inplace=True)
sc.pl.violin(adata,["n_genes_by_counts""total_counts""pct_counts_mt"],jitter=0.4, multi_panel=True)

adata=adata[adata.obs.n_genes_by_counts>200]
adata=adata[adata.obs.n_genes_by_counts<2500]
adata=adata[adata.obs.pct_counts_mt<20]

print(adata.shape)
(2693, 13714)

3.降维聚类分群

sc.pp.normalize_total(adata,target_sum=1e4)
sc.pp.log1p(adata)
adata.raw=adata

sc.pp.highly_variable_genes(adata,n_top_genes=2000)
sc.pp.scale(adata)
sc.pp.pca(adata)
sc.pp.neighbors(adata,n_pcs=15)
sc.tl.leiden(adata,flavor="igraph",n_iterations=2,resolution=0.5)
sc.tl.umap(adata)
sc.pl.umap(adata,color='leiden')

4.singler自动注释

singler的资料实在太少,文档也很简洁,我学习到这个地方时,请教了包的作者两个问题:
1.如何按照cluster完成注释?
作者回答可以用scranpy的aggregate_across_cells函数按簇整合;
Q: In the R package singleR, I am able to utilize the cluster parameter; however, it appears that this parameter does not exist in the Python version of singler.Did I miss anything?
A: scranpy has an aggregate_across_cells() function that you can use to get the aggregated matrix that can be used in classify_single_reference(). That should be the same as what SingleR::SingleR() does under the hood.
I suppose we could add this argument, but to be honest, the only reason that cluster= still exists in SingleR() is for back-compatibility purposes. It's easy enough to do the aggregation outside of the function and I don't want to add more responsibilities to the singler package.
2.应该选择raw count还是lognormalized data 还是scaled data?
作者回答都可以
Q: Thank you. I've been learning singler recently. According to the quick start guide on the pip website,the test_data parameter seems to require the original count data:
data = sce.read_tenx_h5("pbmc4k-tenx.h5", realize_assays=True)
mat = data.assay("counts")
However, the R version of SingleR typically uses log-normalized data.  The documentation also mentions,”or if you are coming from scverse ecosystem, i.e. AnnData, simply read the object as SingleCellExperiment and extract the matrix and the features.“,but data processed with Scanpy could be extracted as scaled data.  Could you provide advice on which matrix I should use, or if either would be suitable?
A: For the test dataset, it doesn't matter. Only the ranks of the values are used by SingleR itself, so it will give the same results for any monotonic transformation within each cell.
IIRC the only place where the log/normalization-status makes a difference is in SingleR::plotMarkerHeatmap() (R package only, not in the Python package yet) which computes log-fold changes in the test dataset to prioritize the markers to be visualized in the heatmap. This is for diagnostic purposes only.
Of course, the reference dataset should always be some kind of log-normalized value, as log-fold changes are computed via the difference of means, e.g., with getClassicMarkers().
其实使用哪个数据还是会产生一些差别的,我们就沿用log-normalized数据吧(当然其他的也可以)
mat = adata.raw.X.T # 矩阵
features = list(adata.raw.var.index) #矩阵的行名-基因
import scranpy
m2 = scranpy.aggregate_across_cells(mat,adata.obs['leiden']) #按照聚类结果整合单细胞矩阵
m2
SummarizedExperiment(number_of_rows=13714, number_of_columns=8, assays=['sums''detected'], row_data=BiocFrame(data={}, number_of_rows=13714, column_names=[]), column_data=BiocFrame(data={'factor_1': StringList(data=['0''2''3''4''1''5''6''7']), 'counts': array([452, 350, 226, 252, 713, 226, 450,  24], dtype=int32)}, number_of_rows=8, column_names=['factor_1''counts']), column_names=['0''2''3''4''1''5''6''7'])
查看都有哪些可选的注释
import celldex
refs = celldex.list_references() #这句也有可能因为网络问题而报错,不过可以不运行,只是为了知道下面可以写什么注释和什么版本。
print(refs[["name""version"]])
                        name     version
0                       dice  2024-02-26
1           blueprint_encode  2024-02-26
2                     immgen  2024-02-26
3               mouse_rnaseq  2024-02-26
4                       hpca  2024-02-26
5  novershtern_hematopoietic  2024-02-26
6              monaco_immune  2024-02-26
celldex的参考数据是会下载的,经常有网络问题下载困难,导致运行失败,可以存本地文件,只有第一次运行时会下载,但要注意换了参考数据则fr和fetch_reference里两处要修改
import os
import pickle

fr = "ref_blueprint_encode_data.pkl" 
if not os.path.exists(fr):
    ref_data = celldex.fetch_reference("blueprint_encode""2024-02-26", realize_assays=True)
    with open(fr, 'wb'as file:
        pickle.dump(ref_data, file)
else:
    with open(fr, 'rb'as file:
        ref_data = pickle.load(file)
完成注释
import singler
results = singler.annotate_single(
    test_data = m2,
    test_features = features,
    ref_data = ref_data,
    ref_labels = "label.main"
)
将注释结果添加到anndata对象里,并画图
dd = dict(zip(list(m2.column_data.row_names), results['best']))
dd
{'0''CD8+ T-cells',
 '2''B-cells',
 '3''Monocytes',
 '4''NK cells',
 '1''CD4+ T-cells',
 '5''CD8+ T-cells',
 '6''Monocytes',
 '7''Monocytes'}
adata.obs['singler']=adata.obs['leiden'].map(dd)

sc.pl.umap(adata,color = 'singler')
自动注释不一定是完全准确的,你换一个参考数据也会发现结果会变。发现有问题就要结合背景知识(比如marker基因)去检查一下。

都已经看到这里了,那就再看看我们近期的培训日程,有合适的就来参加呀(错过了时间也没关系,因为都是循环开课的,随时等你)~

生信新手保护学习小组,适用于任何方向打基础。本周五(24.11.29)开始,学费50,7天,要求每天有2小时用于学习,具体时间自由安排,详细图文教程+打卡+课程答疑。

👉生信新手保护学习小组

单细胞陪伴学习小组,适用于单细胞方向。本周五(24.11.29)开始,学费100,12天,不要求有基础,3天R语言+9天单细胞,代码丝滑,填平新手常见的坑,方便换数据跑出结果和图表,详细图文教程+打卡+课程答疑。

👉 单细胞陪伴学习小组

12月生信入门和数据挖掘线上直播课,12月2号开始,生信入门班内容是R语言+GEO+linux+转录组上下游分析,4周*5天,学费3699。数据挖掘班内容是R语言+GEO+TCGA+转录组下游分析+机器学习+单细胞数据挖掘和文章复现,3周*5天,学费2899。12月的还没发,内容和11月的基本相同,细节一直在改进→生信入门&数据挖掘线上直播课11月班

以上课程都是0基础友好型,选择困难症找我帮你选,欢迎联系我咨询和报名👇

python+单细胞的学习小组和直播课也即将上线了,我们马上开启内测,暂时只收老学员,(因为我怕翻车啊)。请老学员们留意群通知! 正式课程(对所有人开放)将于春节前后上线!

python做单细胞有什么优势吗


生信星球
一个零基础学生信的平台-- 原创结构化图文/教程,精选阶段性资料,带你少走弯路早入门,收获成就感,早成生信小能手~
 最新文章