深度学习工作:从追求 SoTA 到揭示新现象

学术   2024-12-28 12:11   江苏  

作者丨黄哲威 hzwer@知乎
来源丨https://zhuanlan.zhihu.com/p/14170281797
编辑丨极市平台

导读

 

本文主要讨论了从追求模型 SoTA 到揭示新现象的转变。通过几个例子,包括ACNet到RepVGG的发展,RIFE插帧、Film插帧,以及OpenAI的近期工作,阐述了这种转变的重要性。 

最近大家对于前沿工作的讨论,常常出现两极分化

比如 DiT,看到很多人说是灌水,研究生实验报告,Sora 以后有人又说“打脸”

比如说 OpenAI-o3,有答主说 “这是真正的智能爆炸,断崖式提升”,然后评论区说 “下次换个话术”

身边的故事,近期审了不少论文,发现大家对于宣称 SoTA 的工作越来越严苛了。往年那种先 SoTA 再故事的论文,眼看着被连环拒。作者喊着性能无敌,审稿人 borderline reject

想了一些东西,也对 论文写作指南(https://github.com/hzwer/WritingAIPaper) 做了点补充

ACNet 到 RepVGG 的现象上升

聊个大佬朋友的例子, @丁霄汉 说 RepVGG 其实可以叫 ACNetv2

简单来说 ACNet 就是训练的时候三个卷积核,推理的时候合成一个

ACNet 在 ICCV19 投稿得分还是有正有负被捞起来,目前 800+ 引用说明后续影响力很不错

我个人觉得并不是当年的审稿人水平太差没有看出它的创新性,而是 ACNet 的创新性在丁博的后续工作中有广泛提升

因为 RepVGG 抽象了一个新概念“结构重参数化”,把 ACNet 中不好说清楚动机的设计方式变成 “构造一系列结构(一般用于训练),并将其参数等价转换为另一组参数(一般用于推理),从而将这一系列结构等价转换为另一系列结构”

然后同时又报告了一个现象,即 VGG 式的网络,只要有并行的恒等和 1x1 卷积分支,就能训出 ResNet 相当的性能,推理时还跟原来的 VGG 结构一样

重参数化自此成为手工设计 CNN 的一类重要操作

论文刷点是一部分,更高的性能同时揭露新的现象,才是学术的本质

王婆卖瓜 - RIFE 插帧

卖个自己论文的例子 - RIFE 实时视频插帧模型(https://www.zhihu.com/question/516128811/answer/2557922020)

我近一两年才逐渐意识到自己阴差阳错做了一篇还不错的论文,目前还不知道怎么达到更高水平,希望以此为例传达一些经验教训

研究初衷是当时业界流行的插帧算法 DAIN 速度比较慢,就想设计个规整的 CNN 网络来做一个实时插帧模型

一开始投稿也是主要突出 SoTA 性能,但是审稿人买账的不多,特别是轻量化模型并不是一个讨喜的研究话题,被拒好几次

虽然我们认为某个指标提高就是模型核心竞争力的体现,但是全世界大概只有几个小同行共识,而且提高一点性能,本身不为领域带来什么新的知识

于是我们重写了文章,更多的加入了新的发现,于是审稿人和读者可以各自寻找心中的哈姆雷特

  1. 把先前一些模型的误差解释为光流逆转时忽略了物体空间移动,所以我们有更强的动机在轻量化网络中端到端估计中间帧光流
  2. 对于为什么要做光流蒸馏,先指出输入中间帧信息为“特权”的模型会有高得多的性能
  3. 多倍插帧,我们发现把目标时间 T 输入进网络是可以实现控制任意时刻插帧的,而且训练之后还可以放入梯度式的时间编码实现场景融合或果冻效应模拟
  4. 将光流和融合权重先一起预测,可以用来做其它模态的插帧
  5. 性能上我们也改成强调整体设计带来的多倍插帧场景的效果提升等等

这样自己都不用强调,审稿人每个人都会说这篇论文提出的方法性能很好

我们希望读者觉得论文更有读的价值,现在看引用也真的来自很多不同的方向,比如有 20+ 篇做果冻效应的引用

为什么说 “阴差阳错” 呢,因为很多 idea 其实是多次 rebuttal 以后想的。比如说有两次审稿人批评不能做任意时刻插帧,我就回复说这个简单,把目标时间 T 输入就行了嘛。审稿人说,没做实验你说个锤子,一做才发现效果比预期还好

水平所限,当年其实还是没有把这篇论文写的很好,写这篇总结是希望下次能做的更优美

不用刷 SoTA 的 Film 插帧

带着这样的视角,看看为什么有的论文在很卷的赛道也能中得顺利,发在 ECCV22 的插帧论文 Film: Frame interpolation for large motion(https://github.com/google-research/frame-interpolation),Fitsum Reda 大佬作品

看宣称的论文贡献:

我们将帧插值的范围扩展到一个新颖的近重复照片插值应用,为社区开辟了一个新的探索空间。
– 我们调整了一个共享权重的多尺度特征提取器,并提出了一个尺度无关的双向运动估计器,使用常规训练帧来很好地处理小范围和大范围的运动
– 我们采用基于Gram矩阵的损失函数来修复由大场景运动引起的大范围遮挡,从而生成清晰且令人满意的帧
– 我们提出了一个统一、单阶段的架构,以简化训练过程,并消除对额外光流或深度网络的依赖

很明显地有一些新东西,首先是开辟新的研究范围,找到一些以往算法都会挂掉的例子

然后围绕这个问题构建整个论文,提出了一系列设计,包括结构和损失函数

和别人的对比是次要的,在以往 benchmark 上和 SoTA 差不多可比就可以了,突出一些关注场景的性能

近期热门的 OpenAI 工作

OpenAI 发的一系列东西,如果我们从做新现象的角度去审视,就能知道为什么它们是好东西

比如说 Sora 现在不如可灵,那它是不是价值显著下降?

我觉得可灵以及很多国产视频生成大模型的广泛成功,其实说明了 Sora 的含金量,即它展示的现象是别人可以复现的,通过 DiT 来高质量长时长的可控视频生成,甚至于它的失败例子其实都是很有意思的实验现象

GPT4 / o1 / o3,每一个都展示了前代模型没有的新现象,这是它们足以吸引诸多研究者的原因

如果我第一次看到 ChatGPT,我会很疑惑怎么会有这样交互水平的对话模型,它是不是在时不时联网 + 人工干预 + 复杂的 pipeline 设计来产出内容

然后当我们在小模型复现了一些流程以后,会惊讶于一个 7B 左右大小的模型真的能日常对话

GPT4 一开始最吸引我的,就是它解决我出的算法题的水平。虽然它在这方面不如很多经过训练的初中生,但是比起其它胡说八道的模型真的强了很多

o1 / o3 是思维链了更扩展版本,探索了用更多的推理开销换取智能的可能性

具体就不赘述了,总之我希望社区看这些工作的时候,不要过多讨论 xxx 是不是通往 AGI(通用人工智能)的路子,以及 xxx 的本质是不是就是 xxx,而是分享我们能从新方法看到什么新现象

新的现象才孕育着新的可能


Author: [ybq]

Link: [https://zhuanlan.zhihu.com/p/716344766]


这篇文章给大家推荐几个大模型的练手程序,也就是所谓的“基本功”。

先问个问题,除了 transformer、rope、swiglu、rms_norm,大家觉着大模型的基本功都有哪些呢?flash_attention 的原理?megatron 的各种 parallel 策略?量化和推理加速技术?cuda编程?

怎么说呢,这些“有技术含量的大模型的核心技术”确实很重要,但我个人还是觉着大多数人在实际工作中并不需要完全理解它们。因为它们追求的是模型性能的极限优化,对我们做个简单的 SFT、PPO 并无太大助力。往往我们的需求只是使用它们,而不是去优化它们。

所以,我会给出一些我个人认为工作中很常用,但却“没有技术含量”的一些基本功(刷面经的同学可以不用看了哈,我推荐的基本功面试官不会考的)。


trans_XX_to_llama.py

在开源社区,llama 的网络结构已经一统江湖了,那也就是说 modeling_llama.py 理论上可以 load 起来任何一个开源模型。

OK,请自行完成以下脚本,使得我们可以用 modeling_llama.py 加载任何一个其他开源模型

  • trans_qwen_to_llama.py
  • trans_llama_to_qwen.py
  • ……

完成这些工作,你会理解每个开源模型的独特之处,比如,qwen2 的 q、k、v 的线性变换是有 bias 的,baichuan 的 lm_head 之前有一个 normalize() 的操作,甚至每个开源模型你都能观察到一些 attention 的魔改。再然后,对着他们的论文去找,为什么他们的作者要做这些改动?能不能从这个过程中学到知识就看各自悟性了。

进阶篇:

  • trans_llama_to_megatron.py (给定参数 tp 和 pp)
  • trans_megatron_to_llama.py

并不是所有同学都用 megatron 训代码,但用 megatron 训代码的同学,这两个脚本是基本功中的基本功了。这里只提醒一下,megatron_checkpoint 的 pp_size 实现 merge 和 split 非常简单,但在对 tp_size 进行 merge 和 split 的时候,一定要留意 megatron 的 gqa 的实现方式。

modeling_XX.py

即然我们已经可以万物转 llama 了,那为什么我还一定要使用 modeling_llama.py 呢?毕竟:

  • modeling_llama.py 在加载模型的时候没有 skip_build ;
  • modeling_llama.py 缺少 stream_generate;
  • modeling_llama.py 文件不支持 sequence_parallel ;
  • modeling_llama.py 默认使用 flash_attention;
  • modeling_llama.py 并没有一个可以作为 reward_model 的 lm_head;
  • ……

因此,实现一个属于自己的 modeling_XX.py 吧,集百家之长,先去收集 modeling_llama.py、 modeling_qwen.py、 modeling_baichuan.py、 modeling_yi.py、 modeling_deepseek.py、modeling_glm.py 等所有的开源文件,再把各家公司实现的比较好用的 def 加入到自己的 modeling_XX.py 中。

这样,当市面上出现任何一个新的开源模型,我们就都可以通过“trans_newModel_to_myModel.py”,快速的对该模型进行微调操作,而不用修改任何训练代码。

进阶篇:

我们还可以给自己的 modeling 文件加入很多有趣的东西来助力日常的 debug,比如:

  • def show_cos_distance(self, layer):输出某个 layer 的 input_hidden_states 和 output_hidden_states 的余弦距离;
  • def show_topk_token(self, layer, K=10):输出用某个 layer 去预测 next token 时的最大 K 个 token;
  • def show_attention(self, layer, tokenA, tokenB):输出第 layer 层的某两个 token 之间的 attention_value。

multi_infer.py

model.generate() 我们都再熟悉不过了。在不考虑推理加速等技术时,一个客观事实是:“8 卡 load 1 个模型、开大 batch_size ”的推理速度,远远小于 “8 卡 load 8 个模型、开小 batch_size ”的推理速度。

那么有需求了,**实现一个 class infer (model_path, data_path, output_path, num_workers)**,根据自己的喜欢,可以用 torch_run,也可以用 multiprocessing,亦或是其他 python 库。达成下面这个目的即可:在推理的时候让 1 机 8 卡 load 8 / 4 / 2 / 1 个模型,来快速的推理完一大批数据。

tips:一些写法可能需要给 modeling_XX.py 加入一个 def set_device(self, device_list) 函数,毕竟如果每次都用 os.environ["CUDA_VISIBLE_DEVICES"]="3,4" 来控制使用哪些卡来 load 模型,有点不太优雅。

进阶篇:

  1. 单机的并行推理已经实现了,不妨试试多机的;
  2. 学会用 vllm 等更快的推理框架,而不是 model.generate()。

Channel Loss

在介绍领域模型 post-pretrain 的时候,我说过一句话:做 domain post-pretrain 不看 channel loss,你不如别开 tensorboard。

基本大部分情况下,post-pretrain 的 loss 曲线都呈“缓慢下降”或“持平”的变化趋势,sft 的 loss 曲线都呈“快速下降”且“阶梯状”的变化趋势,这个时候除了初始 loss 和最终 loss是否符合预期外,我们能从中得到的信息微乎其微。因此,把数据划分成不同的数据源,对每个数据源的 loss 曲线单独观察,就显得尤为有意义,这也是研究跷跷板问题的必要环节。

题目来了:改进训练代码,给自己的 sft 数据随机赋予一个 channel,然后在训练过程中绘制出每个 channel 的 loss 曲线。

tips:考虑通过 all_gather_object 实现。

进阶篇:

  1. megatron 由于有 tp 和 pp 存在,实现起来难度远大于 deepspeed;
  2. model.trainer() 的训练方式封装的很死,如何加入 channel_loss 呢?

先列出这些吧,这些基本功可能对求职没有任何帮助,但拿来优化开发效率应该蛮好用的!此外,以上提到的所有程序 ChatGPT 都会写(不包括进阶篇,进阶篇有些我也没调通过),不会的话就问问 Chat 老师。

进技术交流群请添加AINLP小助手微信(id: ainlp2)

请备注具体方向+所用到的相关技术点

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括LLM、预训练模型、自动生成、文本摘要、智能问答、聊天机器人、机器翻译、知识图谱、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP小助手微信(id:ainlp2),备注工作/研究方向+加群目的。


AINLP
一个有趣有AI的自然语言处理公众号:关注AI、NLP、大模型LLM、机器学习、推荐系统、计算广告等相关技术。公众号可直接对话双语聊天机器人,尝试对对联、作诗机、藏头诗生成器、自动写作等,查询相似词,测试NLP相关工具包。
 最新文章