一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测

文摘   2024-11-22 22:00   广东  

读完需要

6
分钟

速读仅需 2 分钟

请尊重原创劳动成果
转载请注明本文链接
及文章作者:机器学习之心

点击阅读原文或复制以下链接到浏览器获取文章完整源码和数据:

https://mbd.pub/o/bread/mbd-Z5iZm5pp

摘要:北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测

1

   

基本介绍

1.Matlab NGO-Transformer-LSTM多变量回归预测,北方苍鹰算法(NGO)优化Transformer-LSTM组合模型(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

5.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果。

购买后可加博主QQ1153460737咨询交流。注意:其他非官方渠道购买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。


2

   

2.1

数据集

   

   

2.2

运行效果

   

完整代码链接:https://mbd.pub/o/bread/mbd-Z5iZm5pp

也可扫描二维码:

3


   

部分源码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行


%% 划分训练集和测试集P_train = res(1: num_train_s, 1: f_)';T_train = res(1: num_train_s, f_ + 1: end)';M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';T_test = res(num_train_s + 1: end, f_ + 1: end)';N = size(P_test, 2);
%% 数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺P_train = double(reshape(P_train, f_, 1, 1, M));P_test = double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';t_test = t_test' ;
%% 数据格式转换for i = 1 : M p_train{i, 1} = P_train(:, :, 1, i);end
for i = 1 : N p_test{i, 1} = P_test( :, :, 1, i);end

%% 参数设置options = trainingOptions('adam', ... % Adam 梯度下降算法 'MaxEpochs', 100, ... % 最大训练次数 'MiniBatchSize',64, ... %批大小,每次调整参数前所选取的样本数量 'InitialLearnRate', Positions(1), ... % 初始学习率 best_lr 'LearnRateSchedule', 'piecewise', ... % 学习率下降 'LearnRateDropFactor', 0.5, ... % 学习率下降因子 'LearnRateDropPeriod', 50, ... % 经过训练后 学习率 'Shuffle', 'every-epoch', ... % 每次训练打乱数据集 'ValidationPatience', Inf, ... % 关闭验证 'L2Regularization', Positions(3), ... % 正则化参数 'Verbose', false);
%% 模型训练net = trainNetwork(p_train, t_train, lgraph, options);
%% 仿真预测t_sim = predict(net, p_train);
%% 计算适应度fitness = sqrt(sum((t_sim - t_train).^2) ./ length(t_sim));
end



4

   

其他代码

嗯,细心的你会发现:https://mbd.pub/o/slowtrain/work

博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析科研课题模型定制/横向项目模型仿真/职称学术论文辅导/模型程序讲解均可联系本人唯一QQ1153460737(其他均为盗版,注意甄别

技术交流群:购买博主任意代码或分享博主博文到任意三方平台后即可添加博主QQ进群


机器学习之心HML
机器学习和深度学习时序、回归、分类和聚类等程序设计与案例分析,CSDN博主机器学习之心,知乎、B站同名,由于博主公众号名称被别人占用,故加了HML,此号是官方账号,其余打着本人旗号做事本人概不负责,本人QQ1153460737。
 最新文章