论文周报[0805-0811] | 推荐系统领域最新研究进展(21篇)

科技   2024-08-12 08:00   新加坡  
嘿,记得给“机器学习与推荐算法”添加星标

本文精选了上周(0805-0811)最新发布的21篇推荐系统相关论文,主要研究方向包括推荐排序去偏、大模型推荐、可解释推荐、用户意图建模、对称图对比学习推荐、服务推荐、校准序列推荐、跨域冷启动推荐、药物推荐、对话推荐、新闻推荐、低秩域加权分解机、图协同过滤、大模型多模态推荐、大目录推荐中的交叉熵损失、大模型推理增强推荐、点击率预估、推荐中的嵌入压缩综述等。

1.  Mitigating Exposure Bias in Online Learning to Rank Recommendation: A Novel Reward Model for Cascading Bandits
2.  Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
3.  Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation
4.  CADRL: Category-aware Dual-agent Reinforcement Learning for Explainable Recommendations over Knowledge Graphs
5.  Modeling User Intent Beyond Trigger: Incorporating Uncertainty for Trigger-Induced Recommendation
6.  Symmetric Graph Contrastive Learning against Noisy Views for Recommendation
7.  Large Language Model Aided QoS Prediction for Service Recommendation
8.  Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation
9.  Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users
10.  MiranDa: Mimicking the Learning Processes of Human Doctors to Achieve Causal Inference for Medication Recommendation
11.  Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation
12.  LICM: Effective and Efficient Long Interest Chain Modeling for News Recommendation
13.  Low Rank Field-Weighted Factorization Machines for Low Latency Item Recommendation
14.  Deep Uncertainty-Based Explore for Index Construction and Retrieval in Recommendation System
15.  Feedback Reciprocal Graph Collaborative Filtering
16.  MMREC: LLM Based Multi-Modal Recommender System
17.  A Reproducible Analysis of Sequential Recommender Systems
18.  RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders
19.  Leveraging LLM Reasoning Enhances Personalized Recommender Systems
20.  HMDN: Hierarchical Multi-Distribution Network for Click-Through Rate Prediction
21.  Embedding Compression in Recommender Systems: A Survey

1.  Mitigating Exposure Bias in Online Learning to Rank Recommendation: A Novel Reward Model for Cascading Bandits

Masoud Mansoury, Bamshad Mobasher, Herke van Hoof

https://arxiv.org/abs/2408.04332

Exposure bias is a well-known issue in recommender systems where items and suppliers are not equally represented in the recommendation results. This bias becomes particularly problematic over time as a few items are repeatedly over-represented in recommendation lists, leading to a feedback loop that further amplifies this bias. Although extensive research has addressed this issue in model-based or neighborhood-based recommendation algorithms, less attention has been paid to online recommendation models, such as those based on top-K contextual bandits, where recommendation models are dynamically updated with ongoing user feedback.

In this paper, we study exposure bias in a class of well-known contextual bandit algorithms known as Linear Cascading Bandits. We analyze these algorithms in their ability to handle exposure bias and provide a fair representation of items in the recommendation results. Our analysis reveals that these algorithms fail to mitigate exposure bias in the long run during the course of ongoing user interactions. We propose an Exposure-Aware reward model that updates the model parameters based on two factors: 1) implicit user feedback and 2) the position of the item in the recommendation list. The proposed model mitigates exposure bias by controlling the utility assigned to the items based on their exposure in the recommendation list. Our experiments with two real-world datasets show that our proposed reward model improves the exposure fairness of the linear cascading bandits over time while maintaining the recommendation accuracy. It also outperforms the current baselines. Finally, we prove a high probability upper regret bound for our proposed model, providing theoretical guarantees for its performance.

2.  Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations

Erica Coppolillo, Giuseppe Manco, Aristides Gionis

https://arxiv.org/abs/2408.03772

Providing recommendations that are both relevant and diverse is a key consideration of modern recommender systems. Optimizing both of these measures presents a fundamental trade-off, as higher diversity typically comes at the cost of relevance, resulting in lower user engagement. Existing recommendation algorithms try to resolve this trade-off by combining the two measures, relevance and diversity, into one aim and then seeking recommendations that optimize the combined objective, for a given number of items to recommend. Traditional approaches, however, do not consider the user interaction with the recommended items.

In this paper, we put the user at the central stage, and build on the interplay between relevance, diversity, and user behavior. In contrast to applications where the goal is solely to maximize engagement, we focus on scenarios aiming at maximizing the total amount of knowledge encountered by the user. We use diversity as a surrogate of the amount of knowledge obtained by the user while interacting with the system, and we seek to maximize diversity. We propose a probabilistic user-behavior model in which users keep interacting with the recommender system as long as they receive relevant recommendations, but they may stop if the relevance of the recommended items drops. Thus, for a recommender system to achieve a high-diversity measure, it will need to produce recommendations that are both relevant and diverse. Finally, we propose a novel recommendation strategy that combines relevance and diversity by a copula function. We conduct an extensive evaluation of the proposed methodology over multiple datasets, and we show that our strategy outperforms several state-of-the-art competitors. Our implementation is publicly available at https://github.com/EricaCoppolillo/EXPLORE

3.  Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation

Jiachen Zhu, Jianghao Lin, Xinyi Dai, Bo Chen, Rong Shan, Jieming Zhu, Ruiming Tang, Yong Yu, Weinan Zhang

https://arxiv.org/abs/2408.03533

We primarily focus on the field of large language models (LLMs) for recommendation, which has been actively explored recently and poses a significant challenge in effectively enhancing recommender systems with logical reasoning abilities and open-world knowledge. Current mainstream efforts mainly center around injecting personalized information from recommendation models into LLMs by customizing input templates or aligning representations between semantic and recommendation spaces at the prediction layer. However, they face three significant limitations: (1) LoRA is mostly used as a core component in existing works, but personalization is not well established in LoRA parameters as the LoRA matrix shared by every user may not cater to different users' characteristics, leading to suboptimal performance. (2) Although lifelong personalized behavior sequences are ideal for personalization, their use raises effectiveness and efficiency issues since LLMs require escalating training and inference time to extend text lengths. (3) Existing approaches aren't scalable for large datasets due to training efficiency constraints. Thus, LLMs only see a small fraction of the datasets (e.g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space.

To address these problems, we propose RecLoRA. This model incorporates a Personalized LoRA module that maintains independent LoRAs for different users and a Long-Short Modality Retriever that retrieves different history lengths for different modalities, significantly improving performance while adding minimal time cost. Furthermore, we design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces. Extensive experiments on public datasets demonstrate the efficacy of our RecLoRA compared to existing baseline models.

4.  CADRL: Category-aware Dual-agent Reinforcement Learning for Explainable Recommendations over Knowledge Graphs

Shangfei Zheng, Hongzhi Yin, Tong Chen, Xiangjie Kong, Jian Hou, Pengpeng Zhao

https://arxiv.org/abs/2408.03166

Knowledge graphs (KGs) have been widely adopted to mitigate data sparsity and address cold-start issues in recommender systems. While existing KGs-based recommendation methods can predict user preferences and demands, they fall short in generating explicit recommendation paths and lack explainability. As a step beyond the above methods, recent advancements utilize reinforcement learning (RL) to find suitable items for a given user via explainable recommendation paths. However, the performance of these solutions is still limited by the following two points. (1) Lack of ability to capture contextual dependencies from neighboring information. (2) The excessive reliance on short recommendation paths due to efficiency concerns. To surmount these challenges, we propose a category-aware dual-agent reinforcement learning (CADRL) model for explainable recommendations over KGs. Specifically, our model comprises two components: (1) a category-aware gated graph neural network that jointly captures context-aware item representations from neighboring entities and categories, and (2) a dual-agent RL framework where two agents efficiently traverse long paths to search for suitable items. Finally, experimental results show that CADRL outperforms state-of-the-art models in terms of both effectiveness and efficiency on large-scale datasets.

5.  Modeling User Intent Beyond Trigger: Incorporating Uncertainty for Trigger-Induced Recommendation

Jianxing Ma, Zhibo Xiao, Luwei Yang, Hansheng Xue, Xuanzhou Liu, Wen Jiang, Wei Ning, Guannan Zhang

https://arxiv.org/abs/2408.03091

To cater to users' desire for an immersive browsing experience, numerous e-commerce platforms provide various recommendation scenarios, with a focus on Trigger-Induced Recommendation (TIR) tasks. However, the majority of current TIR methods heavily rely on the trigger item to understand user intent, lacking a higher-level exploration and exploitation of user intent (e.g., popular items and complementary items), which may result in an overly convergent understanding of users' short-term intent and can be detrimental to users' long-term purchasing experiences. Moreover, users' short-term intent shows uncertainty and is affected by various factors such as browsing context and historical behaviors, which poses challenges to user intent modeling. To address these challenges, we propose a novel model called Deep Uncertainty Intent Network (DUIN), comprising three essential modules: i) Explicit Intent Exploit Module extracting explicit user intent using the contrastive learning paradigm; ii) Latent Intent Explore Module exploring latent user intent by leveraging the multi-view relationships between items; iii) Intent Uncertainty Measurement Module offering a distributional estimation and capturing the uncertainty associated with user intent. Experiments on three real-world datasets demonstrate the superior performance of DUIN compared to existing baselines. Notably, DUIN has been deployed across all TIR scenarios in our e-commerce platform, with online A/B testing results conclusively validating its superiority. https://github.com/majx1997/DUIN

6.  Symmetric Graph Contrastive Learning against Noisy Views for Recommendation

Chu Zhao, Enneng Yang, Yuliang Liang, Jianzhe Zhao, Guibing Guo, Xingwei Wang

https://arxiv.org/abs/2408.02691

Graph Contrastive Learning (GCL) leverages data augmentation techniques to produce contrasting views, enhancing the accuracy of recommendation systems through learning the consistency between contrastive views. However, existing augmentation methods, such as directly perturbing interaction graph (e.g., node/edge dropout), may interfere with the original connections and generate poor contrasting views, resulting in sub-optimal performance. In this paper, we define the views that share only a small amount of information with the original graph due to poor data augmentation as noisy views (i.e., the last 20% of the views with a cosine similarity value less than 0.1 to the original view). We demonstrate through detailed experiments that noisy views will significantly degrade recommendation performance. Further, we propose a model-agnostic Symmetric Graph Contrastive Learning (SGCL) method with theoretical guarantees to address this issue. Specifically, we introduce symmetry theory into graph contrastive learning, based on which we propose a symmetric form and contrast loss resistant to noisy interference. We provide theoretical proof that our proposed SGCL method has a high tolerance to noisy views. Further demonstration is given by conducting extensive experiments on three real-world datasets. The experimental results demonstrate that our approach substantially increases recommendation accuracy, with relative improvements reaching as high as 12.25% over nine other competing models. These results highlight the efficacy of our method. https://github.com/user683/SGCL

7.  Large Language Model Aided QoS Prediction for Service Recommendation

Huiying Liu, Zekun Zhang, Qilin Wu, Yiwen Zhang

https://arxiv.org/abs/2408.02223

Large language models (LLMs) have seen rapid improvement in the recent years, and are used in a wider range of applications. After being trained on large text corpus, LLMs obtain the capability of extracting rich features from textual data. Such capability is potentially useful for the web service recommendation task, where the web users and services have intrinsic attributes that can be described using natural language sentences and are useful for recommendation. In this paper, we explore the possibility and practicality of using LLMs for web service recommendation. We propose the large language model aided QoS prediction (llmQoS) model, which use LLMs to extract useful information from attributes of web users and services via descriptive sentences. This information is then used in combination with the QoS values of historical interactions of users and services, to predict QoS values for any given user-service pair. Our proposed model is shown to overcome the data sparsity issue for QoS prediction. We show that on the WSDream dataset, llmQoS outperforms comparable baseline models consistently.

8.  Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation

Hyunsik Jeon, Se-eun Yoon, Julian McAuley

https://arxiv.org/abs/2408.02156

Calibrated recommendation, which aims to maintain personalized proportions of categories within recommendations, is crucial in practical scenarios since it enhances user satisfaction by reflecting diverse interests. However, achieving calibration in a sequential setting (i.e., calibrated sequential recommendation) is challenging due to the need to adapt to users' evolving preferences. Previous methods typically leverage reranking algorithms to calibrate recommendations after training a model without considering the effect of calibration and do not effectively tackle the conflict between relevance and calibration during the reranking process.

In this work, we propose LeapRec (Calibration-Disentangled Learning and Relevance-Prioritized Reranking), a novel approach for the calibrated sequential recommendation that addresses these challenges. LeapRec consists of two phases, model training phase and reranking phase. In the training phase, a backbone model is trained using our proposed calibration-disentangled learning-to-rank loss, which optimizes personalized rankings while integrating calibration considerations. In the reranking phase, relevant items are prioritized at the top of the list, with items needed for calibration following later to address potential conflicts between relevance and calibration. Through extensive experiments on four real-world datasets, we show that LeapRec consistently outperforms previous methods in the calibrated sequential recommendation. Our code is available at https://github.com/jeon185/LeapRec

9.  Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users

Guohang Zeng, Qian Zhang, Guangquan Zhang, Jie Lu

https://arxiv.org/abs/2408.01931

Cross-Domain Recommendation (CDR) is a promising paradigm inspired by transfer learning to solve the cold-start problem in recommender systems. Existing state-of-the-art CDR methods train an explicit mapping function to transfer the cold-start users from a data-rich source domain to a target domain. However, a limitation of these methods is that the mapping function is trained on overlapping users across domains, while only a small number of overlapping users are available for training. By visualizing the loss landscape of the existing CDR model, we find that training on a small number of overlapping users causes the model to converge to sharp minima, leading to poor generalization. Based on this observation, we leverage loss-geometry-based machine learning approach and propose a novel CDR method called Sharpness-Aware CDR (SCDR). Our proposed method simultaneously optimizes recommendation loss and loss sharpness, leading to better generalization with theoretical guarantees. Empirical studies on real-world datasets demonstrate that SCDR significantly outperforms the other CDR models for cold-start recommendation tasks, while concurrently enhancing the model's robustness to adversarial attacks.

10.  MiranDa: Mimicking the Learning Processes of Human Doctors to Achieve Causal Inference for Medication Recommendation

Ziheng Wang, Xinhe Li, Haruki Momma, Ryoichi Nagatomi

https://arxiv.org/abs/2408.01445

To enhance therapeutic outcomes from a pharmacological perspective, we propose MiranDa, designed for medication recommendation, which is the first actionable model capable of providing the estimated length of stay in hospitals (ELOS) as counterfactual outcomes that guide clinical practice and model training. In detail, MiranDa emulates the educational trajectory of doctors through two gradient-scaling phases shifted by ELOS: an Evidence-based Training Phase that utilizes supervised learning and a Therapeutic Optimization Phase grounds in reinforcement learning within the gradient space, explores optimal medications by perturbations from ELOS. Evaluation of the Medical Information Mart for Intensive Care III dataset and IV dataset, showcased the superior results of our model across five metrics, particularly in reducing the ELOS. Surprisingly, our model provides structural attributes of medication combinations proved in hyperbolic space and advocated "procedure-specific" medication combinations. These findings posit that MiranDa enhanced medication efficacy. Notably, our paradigm can be applied to nearly all medical tasks and those with information to evaluate predicted outcomes. The source code of the MiranDa model is available at https://github.com/azusakou/MiranDa

11.  Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation

Yunwen Xia, Hui Fang, Jie Zhang, Chong Long

https://arxiv.org/abs/2408.01342

Conversational recommender system (CRS), which combines the techniques of dialogue system and recommender system, has obtained increasing interest recently. In contrast to traditional recommender system, it learns the user preference better through interactions (i.e. conversations), and then further boosts the recommendation performance. However, existing studies on CRS ignore to address the relationship among attributes, users, and items effectively, which might lead to inappropriate questions and inaccurate recommendations. In this view, we propose a knowledge graph based conversational recommender system (referred as KG-CRS). Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, i.e., dynamically changing during the dialogue process by removing negative items or attributes. We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph. Extensive experiments on three real datasets validate the superiority of our method over the state-of-the-art approaches in terms of both the recommendation and conversation tasks.

12.  LICM: Effective and Efficient Long Interest Chain Modeling for News Recommendation

Zhen Yang, Wenhui Wang, Tao Qi, Peng Zhang, Tianyun Zhang, Ru Zhang, Jianyi Liu, Yongfeng Huang

https://arxiv.org/abs/2408.00859

Accurately recommending personalized candidate news articles to users has always been the core challenge of news recommendation system. News recommendations often require modeling of user interests to match candidate news. Recent efforts have primarily focused on extract local subgraph information, the lack of a comprehensive global news graph extraction has hindered the ability to utilize global news information collaboratively among similar users. To overcome these limitations, we propose an effective and efficient Long Interest Chain Modeling for News Recommendation(LICM), which combines neighbor interest with long-chain interest distilled from a global news click graph based on the collaborative of similar users to enhance news recommendation. For a global news graph based on the click history of all users, long chain interest generated from it can better utilize the high-dimensional information within it, enhancing the effectiveness of collaborative recommendations. We therefore design a comprehensive selection mechanism and interest encoder to obtain long-chain interest from the global graph. Finally, we use a gated network to integrate long-chain information with neighbor information to achieve the final user representation. Experiment results on real-world datasets validate the effectiveness and efficiency of our model to improve the performance of news recommendation.

13.  Low Rank Field-Weighted Factorization Machines for Low Latency Item Recommendation

Alex Shtoff, Michael Viderman, Naama Haramaty-Krasne, Oren Somekh, Ariel Raviv, Tularam Ban

https://arxiv.org/abs/2408.00801

Factorization machine (FM) variants are widely used in recommendation systems that operate under strict throughput and latency requirements, such as online advertising systems. FMs are known both due to their ability to model pairwise feature interactions while being resilient to data sparsity, and their computational graphs that facilitate fast inference and training. Moreover, when items are ranked as a part of a query for each incoming user, these graphs facilitate computing the portion stemming from the user and context fields only once per query. Consequently, in terms of inference cost, the number of user or context fields is practically unlimited. More advanced FM variants, such as FwFM, provide better accuracy by learning a representation of field-wise interactions, but require computing all pairwise interaction terms explicitly. The computational cost during inference is proportional to the square of the number of fields, including user, context, and item. When the number of fields is large, this is prohibitive in systems with strict latency constraints.

To mitigate this caveat, heuristic pruning of low intensity field interactions is commonly used to accelerate inference. In this work we propose an alternative to the pruning heuristic in FwFMs using a diagonal plus symmetric low-rank decomposition. Our technique reduces the computational cost of inference, by allowing it to be proportional to the number of item fields only. Using a set of experiments on real-world datasets, we show that aggressive rank reduction outperforms similarly aggressive pruning, both in terms of accuracy and item recommendation speed. We corroborate our claim of faster inference experimentally, both via a synthetic test, and by having deployed our solution to a major online advertising system. The code to reproduce our experimental results is at https://github.com/michaelviderman/pytorch-fm/tree/dev

14.  Deep Uncertainty-Based Explore for Index Construction and Retrieval in Recommendation System

Xin Jiang, Kaiqiang Wang, Yinlong Wang, Fengchang Lv, Taiyang Peng, Shuai Yang, Xianteng Wu, Pengye Zhang, Shuo Yuan, Yifan Zeng

https://arxiv.org/abs/2408.00799

In recommendation systems, the relevance and novelty of the final results are selected through a cascade system of Matching -> Ranking -> Strategy. The matching model serves as the starting point of the pipeline and determines the upper bound of the subsequent stages. Balancing the relevance and novelty of matching results is a crucial step in the design and optimization of recommendation systems, contributing significantly to improving recommendation quality. However, the typical matching algorithms have not simultaneously addressed the relevance and novelty perfectly. One main reason is that deep matching algorithms exhibit significant uncertainty when estimating items in the long tail (e.g., due to insufficient training samples) items. The uncertainty not only affects the training of the models but also influences the confidence in the index construction and beam search retrieval process of these models.

This paper proposes the UICR (Uncertainty-based explore for Index Construction and Retrieval) algorithm, which introduces the concept of uncertainty modeling in the matching stage and achieves multi-task modeling of model uncertainty and index uncertainty. The final matching results are obtained by combining the relevance score and uncertainty score infered by the model. Experimental results demonstrate that the UICR improves novelty without sacrificing relevance on realworld industrial productive environments and multiple open-source datasets. Remarkably, online A/B test results of display advertising in Shopee demonstrates the effectiveness of the proposed algorithm.

15.  Feedback Reciprocal Graph Collaborative Filtering

Weijun Chen, Yuanchen Bei, Qijie Shen, Hao Chen, Xiao Huang, Feiran Huang

https://arxiv.org/abs/2408.02404

Collaborative filtering on user-item interaction graphs has achieved success in the industrial recommendation. However, recommending users' truly fascinated items poses a seesaw dilemma for collaborative filtering models learned from the interaction graph. On the one hand, not all items that users interact with are equally appealing. Some items are genuinely fascinating to users, while others are unfascinated. Training graph collaborative filtering models in the absence of distinction between them can lead to the recommendation of unfascinating items to users. On the other hand, disregarding the interacted but unfascinating items during graph collaborative filtering will result in an incomplete representation of users' interaction intent, leading to a decline in the model's recommendation capabilities.

To address this seesaw problem, we propose Feedback Reciprocal Graph Collaborative Filtering (FRGCF), which emphasizes the recommendation of fascinating items while attenuating the recommendation of unfascinating items. Specifically, FRGCF first partitions the entire interaction graph into the Interacted & Fascinated (I&F) graph and the Interacted & Unfascinated (I&U) graph based on the user feedback. Then, FRGCF introduces separate collaborative filtering on the I&F graph and the I&U graph with feedback-reciprocal contrastive learning and macro-level feedback modeling. This enables the I&F graph recommender to learn multi-grained interaction characteristics from the I&U graph without being misdirected by it. Extensive experiments on four benchmark datasets and a billion-scale industrial dataset demonstrate that FRGCF improves the performance by recommending more fascinating items and fewer unfascinating items. Besides, online A/B tests on Taobao's recommender system verify the superiority of FRGCF.

16.  MMREC: LLM Based Multi-Modal Recommender System

Jiahao Tian, Jinman Zhao, Zhenkai Wang, Zhicheng Ding

https://arxiv.org/abs/2408.04211

The importance of recommender systems is growing rapidly due to the exponential increase in the volume of content generated daily. This surge in content presents unique challenges for designing effective recommender systems. Key among these challenges is the need to effectively leverage the vast amounts of natural language data and images that represent user preferences. This paper presents a novel approach to enhancing recommender systems by leveraging Large Language Models (LLMs) and deep learning techniques. The proposed framework aims to improve the accuracy and relevance of recommendations by incorporating multi-modal information processing and by the use of unified latent space representation. The study explores the potential of LLMs to better understand and utilize natural language data in recommendation contexts, addressing the limitations of previous methods. The framework efficiently extracts and integrates text and image information through LLMs, unifying diverse modalities in a latent space to simplify the learning process for the ranking model. Experimental results demonstrate the enhanced discriminative power of the model when utilizing multi-modal information. This research contributes to the evolving field of recommender systems by showcasing the potential of LLMs and multi-modal data integration to create more personalized and contextually relevant recommendations.

17.  A Reproducible Analysis of Sequential Recommender Systems

Filippo Betello, Antonio Purificato, Federico Siciliano, Giovanni Trappolini, Andrea Bacciu, Nicola Tonellotto, Fabrizio Silvestri

https://arxiv.org/abs/2408.03873

Sequential Recommender Systems (SRSs) have emerged as a highly efficient approach to recommendation systems. By leveraging sequential data, SRSs can identify temporal patterns in user behaviour, significantly improving recommendation accuracy and relevance.Ensuring the reproducibility of these models is paramount for advancing research and facilitating comparisons between them. Existing works exhibit shortcomings in reproducibility and replicability of results, leading to inconsistent statements across papers. Our work fills these gaps by standardising data pre-processing and model implementations, providing a comprehensive code resource, including a framework for developing SRSs and establishing a foundation for consistent and reproducible experimentation. We conduct extensive experiments on several benchmark datasets, comparing various SRSs implemented in our resource. We challenge prevailing performance benchmarks, offering new insights into the SR domain. For instance, SASRec does not consistently outperform GRU4Rec. On the contrary, when the number of model parameters becomes substantial, SASRec starts to clearly dominate all the other SRSs. This discrepancy underscores the significant impact that experimental configuration has on the outcomes and the importance of setting it up to ensure precise and comprehensive results. Failure to do so can lead to significantly flawed conclusions, highlighting the need for rigorous experimental design and analysis in SRS research. Our code is available at https://github.com/antoniopurificato/recsys_repro_conf

18.  RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders

Danil Gusak, Gleb Mezentsev, Ivan Oseledets, Evgeny Frolov

https://arxiv.org/abs/2408.02354

Scalability is a major challenge in modern recommender systems. In sequential recommendations, full Cross-Entropy (CE) loss achieves state-of-the-art recommendation quality but consumes excessive GPU memory with large item catalogs, limiting its practicality. Using a GPU-efficient locality-sensitive hashing-like algorithm for approximating large tensor of logits, this paper introduces a novel RECE (REduced Cross-Entropy) loss. RECE significantly reduces memory consumption while allowing one to enjoy the state-of-the-art performance of full CE loss. Experimental results on various datasets show that RECE cuts training peak memory usage by up to 12 times compared to existing methods while retaining or exceeding performance metrics of CE loss. The approach also opens up new possibilities for large-scale applications in other domains.

19.  Leveraging LLM Reasoning Enhances Personalized Recommender Systems

Alicia Y. Tsai, Adam Kraft, Long Jin, Chenwei Cai, Anahita Hosseini, Taibai Xu, Zemin Zhang, Lichan Hong, Ed H. Chi, Xinyang Yi

https://arxiv.org/abs/2408.00802

Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM reasoning in recommendation systems (RecSys) presents a distinct challenge. RecSys tasks revolve around subjectivity and personalized preferences, an under-explored domain in utilizing LLMs' reasoning capabilities. Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves by utilizing LLM reasoning in both zero-shot and finetuning settings. Additionally, we propose RecSAVER (Recommender Systems Automatic Verification and Evaluation of Reasoning) to automatically assess the quality of LLM reasoning responses without the requirement of curated gold references or human raters. We show that our framework aligns with real human judgment on the coherence and faithfulness of reasoning responses. Overall, our work shows that incorporating reasoning into RecSys can improve personalized tasks, paving the way for further advancements in recommender system methodologies.

20.  HMDN: Hierarchical Multi-Distribution Network for Click-Through Rate Prediction

Xingyu Lou, Yu Yang, Kuiyao Dong, Heyuan Huang, Wenyi Yu, Ping Wang, Xiu Li, Jun Wang

https://arxiv.org/abs/2408.01332

As the recommendation service needs to address increasingly diverse distributions, such as multi-population, multi-scenario, multitarget, and multi-interest, more and more recent works have focused on multi-distribution modeling and achieved great progress. However, most of them only consider modeling in a single multi-distribution manner, ignoring that mixed multi-distributions often coexist and form hierarchical relationships. To address these challenges, we propose a flexible modeling paradigm, named Hierarchical Multi-Distribution Network (HMDN), which efficiently models these hierarchical relationships and can seamlessly integrate with existing multi-distribution methods, such as Mixture of-Experts (MoE) and Dynamic-Weight (DW) models. Specifically, we first design a hierarchical multi-distribution representation refinement module, employing a multi-level residual quantization to obtain fine-grained hierarchical representation. Then, the refined hierarchical representation is integrated into the existing single multi-distribution models, seamlessly expanding them into mixed multi-distribution models. Experimental results on both public and industrial datasets validate the effectiveness and flexibility of HMDN.

21.  Embedding Compression in Recommender Systems: A Survey

Shiwei Li, Huifeng Guo, Xing Tang, Ruiming Tang, Lu Hou, Ruixuan Li, Rui Zhang

https://arxiv.org/abs/2408.02304

To alleviate the problem of information explosion, recommender systems are widely deployed to provide personalized information filtering services. Usually, embedding tables are employed in recommender systems to transform high-dimensional sparse one-hot vectors into dense real-valued embeddings. However, the embedding tables are huge and account for most of the parameters in industrial-scale recommender systems. In order to reduce memory costs and improve efficiency, various approaches are proposed to compress the embedding tables. In this survey, we provide a comprehensive review of embedding compression approaches in recommender systems. We first introduce deep learning recommendation models and the basic concept of embedding compression in recommender systems. Subsequently, we systematically organize existing approaches into three categories, namely low-precision, mixed-dimension, and weight-sharing, respectively. Lastly, we summarize the survey with some general suggestions and provide future prospects for this field.


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

KDD2024 | 基于双重意图转换的搜索推荐联合模型
KDD2024 | GFN4Retention: 基于生成流网络的用户留存建模
论文周报[0729-0804] | 推荐系统领域最新研究进展(19篇)

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇

机器学习与推荐算法
专注于分享经典的推荐技术,致力于传播基础的机器学习、深度学习、数据挖掘等方面的知识。
 最新文章