2024最新!顶级SCI优化!TTAO-CNN-BiGRU-MSA三角拓扑聚合优化、双向GRU融合注意力的多变量回归预测程序!

文摘   教育   2024-11-15 09:06   江苏  

适用平台:Matlab 2023及以上

TTOA三角聚合算法,将在2024年3月正式发表在中科院1区顶级SCI期刊《Expert Systems with Applications》上。
该算法提出时间极短,目前以及近期内不会有套用这个算法的文献。新年伊始,尽快拿下!
我们利用该创新性极高的优化算法对我们的CNN-BiGRU-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化,构成TTAO-CNN-BiGRU-MSA多变量回归预测模型.

完整代码:https://mbd.pub/o/bread/ZZqZlZ1y

文献解读:这个算法的启发来源是类似三角形的拓扑学性质。名为Triangulation Topology Aggregation OptimizerTTAO)的新型数学元启发算法中,每个三角形拓扑单元表示一个搜索个体。TTAO算法通过聚合形成不同大小的类似三角形拓扑单元,以作为基本的进化单元。与其他元启发算法不同,TTAO算法提出了一种新的进化指导模式,主要依靠每个三角形单元中的最佳个体指导单元内个体的进化。因此,这种进化种群不仅依赖于全局引导的优秀个体,还吸收了每个单元中最佳个体的有效正向信息,有助于解决复杂优化问题,克服传统方法在全局搜索时进入局部极值的缺点。接下来,文章通过与其它对比算法:HHO SCSOSAOBWOAOA等测试,验证了TTAO算法具有更强的收敛性能。CEC2017函数和8个工程问题上评估了其优化性能。实验结果表明,TTAO算法在30CEC2017函数上具有优越的收敛性和稳定性。

原理:许多领域通常将研究对象划分为三角形拓扑单元,并建立相关模型进行识别和分析:如金字塔,三角尺等。
在有限或无限维空间中,三角形拓扑可以被视为二维子空间的子图。与其他拓扑相比,三角形在某些封闭系统中更简单、更稳定。
TTAO算法主要通过以下两个阶段进行优化过程:

  • ①不同单元之间的聚合
  • ②相似三角形单元内的聚合
在这个过程中,不断在搜索空间中生成新的顶点,并用它们构建不同大小的相似三角形。TTAO算法将每个三角形视为具有四个个体的基本进化单元,即三角形的三个顶点和一个内部随机顶点。聚合的核心是将具有优良特性的顶点分组在一起。具体来说,TTAO算法通过聚合在不同拓扑单元之间或内部收集具有正向信息的顶点,不断构建相似三角形。
优化步骤:
  • 算法通过迭代进化,在搜索空间中不断生成新的顶点,以构建不同大小的相似三角形。

  • 每个三角形都被视为一个基本进化单元,包含四个搜索个体,即三角形的三个顶点和一个内部随机顶点。

  • TTAO算法的核心是聚集具有优越特性的顶点。具体而言,TTAO算法通过聚集来自不同拓扑单元的优秀个体信息,以创建新的可行解。

  • 算法通过三个阶段的更新过程来实现全局搜索和局部挖掘:生成三角拓扑单元、通用聚集和局部聚集。

构成的TTAO-CNN-BiGRU-MSA多变量回归预测模型的创新性在于以下几点

TTAO算法区别于传统智能算法的创新性:
①细胞聚类策略TTAO 算法采用三角形拓扑单元展开优化过程,每个三角形拓扑单元具有一个顶点,这些顶点分别代表了搜索个体。这种细胞聚类策略使得 TTAO 算法能够更好地挖掘局部和全局信息。

②两级聚合策略:TTAO 算法采用了两级聚合策略:广义聚合和局部聚合。广义聚合主要关注全局探索,通过不同三角形拓扑单元间的信息交换来找到更有希望的位置;局部聚合则使得每个单元内的信息得到有效开发,确保准确地探索局部区域。

③自适应策略:TTAO 算法将上一代的有效信息自适应地继承下来,从而保持种群的多样性。这种自适应策略使得 TTAO 算法能够快速收敛到全局最优解。

④个体引导进化策略TTAO算法提出了一种新的关键个体引导进化策略,使得该算法不仅依赖于精英个体的全局引导进化,还吸收了每个单元中最佳个体的积极正向信息。

优化套用—基于三角拓扑聚合优化算法(TTAO)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制(Multi-Head Self Attention,MSA)的超前24步多变量时间序列回归预测算法TTOA-CNN-BiGRU-MSA

功能:

1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2、通过TTAO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。

3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。

4、提供MAPERMSEMAE等计算结果展示。

适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

数据集格式:

前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比;训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0);适应度曲线(误差逐渐下降)

误差评估:

部分图片来源于网络,侵权联系删除!
完整代码:https://mbd.pub/o/bread/ZZqZlZ1y

欢迎感兴趣的小伙伴获得完整版代码哦~

点击左下角“阅读原文”

②复制搜索上方“上方链接”

长按识别下方二维码

关注小编会不定期推送高创新型、高质量的学习资料、文章程序代码,为你的科研加油助力!

创新优化及预测代码
免费分享研究理论及方法,基础代码资料,努力提供电力系统相关专业预测及优化研究领域的创新性代码,保质保量!面包多地址:https://mbd.pub/o/yc_yh/work
 最新文章