【中文】巨星,徐超,郝俊红,等.新型储能技术进展与挑战Ⅱ:物理储能与储热技术[J].太阳能,2024,(08):48-58.
摘 要:新型储能技术日益成为中国建设新型能源体系和新型电力系统的关键技术,已成为中国经济发展的新动能,将在促进可再生能源消纳、实现能源体系转型、提高能源利用效率、减少环境污染等方面发挥重要作用,相关技术研究也在快速发展。开展了该领域的系列评价性综述工作,分为电化学储能技术、物理储能与储热技术、储能集成与规划3个部分,对各类新型储能技术的应用领域、最新研究进展及局限性等问题进行了全面系统的对比分析,并进一步探讨了储能集成、安全、规划调度等储能系统相关领域面临的挑战及发 展趋势。第2部分为物理储能与储热技术,重点对物理储能与储热技术中的压缩空气储能、飞轮储能、重力储能、相变储热、热化学储热和卡诺电池技术与工程的相关成果进行了综合分析与讨论。总体而言,物理储 能和储热技术大多具有使用寿命长、安全性高的特点,且在能量转化过程中自身多具有转动惯量,属于电网支撑型的储能技术,可满足从大规模长时储能到高功率快速响应的不同需求。在新兴的物理储能和储热技术中, 重力储能和卡诺电池的相关技术显示出良好的发展前景。
关键词:储能技术;物理储能;压缩空气储能;飞轮储能;重力储能;相变储热;热化学储热;卡诺电池
中图分类号:TK02 文献标志码:A
在大功率高速飞轮本体方面,尚存在以下技术难点需要突破,具体为:1)计及效率、安全性、储能量和成本的大功率高速飞轮的转子系统优化设计与制造技术;2)真空环境下大功率高速电机的冷却与绝缘技术;3)复杂工况下,高可靠、强抗扰的飞轮轴系振动抑制技术。
在电网调频应用方面,尚存在以下技术难点需要突破,具体为:1)飞轮单机高动态响应控制技术;2)飞轮储能阵列功率一致性及宽功率域稳定控制技术;3)面向电网主动支撑的飞轮储能阵列协同调控和能量管理技术。
1.3重力储能
重力储能的工作原理与抽水蓄能的工作原理类似,但其采用固体储能介质,摆脱了抽水蓄能受地理条件限制的问题,适用于风光资源丰富且地理环境复杂的新能源大基地,具有长时储能、大容量储能、储能介质无衰减、建设周期短、使用寿命长及环境友好等优势。
虽然重力储能的工作原理简单,但其形式多样,根据固体储能介质(即储能质量块)的运行轨迹,重力储能可分为垂直式重力储能和斜坡式重力储能两大类[24-25],工作原理示意图如图2所示。图中:h1、h2、h3分别为加速区、匀速区、减速区的高度;m为储能质量块的质量;h为斜坡高度;为斜坡倾角。
按储能塔不同的结构形式,垂直式重力储能可细分为塔式、矩阵式及竖井式重力储能[26];按固体储能介质不同的传动方式,斜坡式重力储能可细分为斜坡轨道式、悬架缆车式与斜坡缆轨式重力储能[27]。
[参考文献]
[1]外唐网.中关村储能产业技术联盟:2024中国储能技术与产业最新进展与展望报告[R/OL].(2024-04-29).https://www.sohu.com/a/775080132_120359514.
[2]观研报告网.中国压缩空气储能行业现状深度研究与未来前景调研报告(2022—2029年)[R/OL].[2024-06-01].https://www.chinabaogao.com/baogao/202209/611310.html.
[3]锐观网.2024—2029年中国飞轮储能行业市场发展潜力及投资前景分析报告[R/OL].[2024-06-01].https://www.reportrc.com/report/20240527/65672.html.
[4]江苏兴泰集团.储热技术现状及相变储热材料的研究进展[EB/OL].(2023-05-31)[2024-06-01].https://www.sohu.com/a/680624897_121407143.
[5]陈秋宇,李文涛,李竺豫,等.中高温热化学储热材料研究进展[J].热力发电,2024,53(6):12-20.
[6]顾清之.我对卡诺电池的理解(4)——卡诺电池的未来[R/OL].(2024-02-01)[2024-06-01].https://zhuanlan.zhihu.com/p/681001254.
[7]JANKOWSKIM,PAŁACA,SORNEKK,etal.Statusanddevelopmentperspectivesofthecompressedairenergystorage(CAES)technologies——aliteraturereview[J].Energies,2024,17(9):2064.
[8]LIANGT,ZHANGTT,LINXP,etal.Liquidairenergystoragetechnology:acomprehensivereviewofresearch,developmentanddeployment[J].Progressinenergy,2023,5(1):012002.
[9]BAZDARE,SAMETIM,NASIRIF,etal.Compressedairenergystorageinintegratedenergysystems:areview[J].Renewableandsustainableenergyreviews,2022,167:112701.
[10]齐芳.国际首套300兆瓦先进压缩空气储能国家示范电站并网发电[N].光明日报,2024-05-01(6).
[11]XIAT,LIYW,ZHANGN,etal.Roleofcompressedairenergystorageinurbanintegratedenergysystemswithincreasingwindpenetration[J].Renewableandsustainableenergyreviews,2022,160:112203.
[12]BARBOURE,POTTIEDL.Adiabaticcompressedairenergystoragetechnology[J].Joule,2021,5(8):1914-1920.
[13]LIAOZR,ZHONGH,XUC,etal.Investigationofapackedbedcoldthermalstorageinsupercriticalcompressedairenergystoragesystems[J].Appliedenergy,2020,269:115132.
[14]GUOH,XUYJ,YANMD,etal.Chapterone——effectofthermalstorageandheatexchangeroncompressedairenergystoragesystems[J].Advancesinheattransfer,2023,55:1-39.
[15]ZHANGXJ,GAOZY,ZHOUBQ,etal.Advancedcompressedairenergystoragesystems:fundamentalsandapplications[J].Engineering,2024,34:246-269.
[16]戴兴建,姜新建,张剀.飞轮储能系统技术与工程应用[M].北京:化学工业出版社,2021.
[17]ZHANGHS,LIUYB,TENGW,etal.Dynamiccharacteristicsanalysisofenergystorageflywheelmotorrotorwithair-gapeccentricityfault[J].Journalofenergystorage,2024,89:111684.
[18]胡东旭,朱少飞,魏晓钢,等.MW级大储能量飞轮轴系结构力学及动力学研究[J].储能科学与技术,2024,13(5):1542-1550.
[19]林大方,王四季,王程阳,等.复杂工况下储能飞轮转子传力支承与减振设计[J].太阳能学报,2024,45(4):356-364.
[20]WEIL,ZHOUZY,WANGBY,etal.ADRC‐basedcontrolstrategyforDC‐linkvoltageofflywheelenergystoragesystem[J].Energyscience&engineering,2023,11(11):4141-4154.
[21]QINR,CHENJT,LIZ,etal.Simulationofsecondaryfrequencymodulationprocessofwindpowerwithauxiliaryofflywheelenergystorage[J].Sustainability,2023,15(15):11832.
[22]洪烽,梁璐,逄亚蕾,等.基于机组实时出力增量预测的火电-飞轮储能系统协同调频控制研究[J].中国电机工程学报,2023,43(21):8366-8377.
[23]梁志宏,刘吉臻,洪烽,等.电力级大功率飞轮储能系统耦合火电机组调频技术研究及工程应用[EB/OL].(2023-12-08)[2024-06-01].https://doi.org/10.13334/j.0258-8013.pcsee.231472.
[24]TONGWX,LUZG,CHENWJ,etal.Solidgravityenergystorage:areview[J].Journalofenergystorage,2022,53:105226.
[25]王粟,肖立业,唐文冰,等.新型重力储能研究综述[J].储能科学与技术,2022,11(5):1575-1582.
[26]邱清泉,罗晓悦,林玉鑫,等.垂直式重力储能系统的研究进展和关键技术[J].储能科学与技术,2024,13(3):934-945.
[27]张京业,林玉鑫,邱清泉,等.基于斜坡和山体的重力储能技术研究进展[J].储能科学与技术,2023,13(3):924-933.
[28]EnergyCache.Ultralong-durationenergystorageinasolidfuel[EB/OL].[2024-05-31].https://cache-energy.com/technology/.
[29]东方财富网.EnergyVault因提供用于存储清洁能源和交付可分配电力的经济方式被世界经济论坛评为技术先锋[EB/OL].(2020-06-17)[2024-05-31].https://caifuhao.eastmoney.com/news/20200617180327218729450/.
[30]李明,亚夏尔∙吐尔洪,查鲲鹏,等.用于快速响应负荷需求的两段式斜坡重力储能系统放电功率调节方法[J].电机与控制应用,2024,51(4):12-19.
[31]李妍,王青山,张群,等.一种重力储能系统精确并网控制方法及系统[P].2024-03-29.
[32]陈巨龙,李震,朱永清,等.基于深度神经网络的斜坡式重力储能系统质量块抓取装置控制方法[J].电机与控制应用,2023,50(11):37-45.
[33]中国电力工程顾问集团华北电力设计院有限公司官网.华北院与华北电力大学签约重力储能实验平台共建合作协议[EB/OL].(2024-04-23).http://www.ncpe.ceec.net.cn/art/2024/4/23/art_19319_2516835.html.
[34]FUWC,YANX,GURUMUKHIY,etal.Highpowerandenergydensitydynamicphasechangematerialsusingpressure-enhancedclosecontactmelting[J].Natureenergy,2022,7:270-280.
[35]YANGZL,WALVEKARR,WONGWP,etal.Advancesinphasechangematerials,heattransferenhancementtechniques,andtheirapplicationsinthermalenergystorage:acomprehensivereview[J].Journalofenergystorage,2024,87:111329.
[36]SHARSHIRSW,JOSEPHA,ELSHARKAWYM,etal.Thermalenergystorageusingphasechangematerialsinbuildingapplications:areviewoftherecentdevelopment[J].Energyandbuildings,2023,285:112908.
[37]WONGWP,KAGALKARA,PATELR,etal.Nano-enhancedphasechangematerialsforthermalenergystorage:acomprehensivereviewofrecentadvancements,applications,andfuturechallenges[J].Journalofenergystorage,2023,74:109265.
[38]WANGKC,TAOKY,YEF,etal.Adualencapsulationstrategyforhigh-temperaturemicroPCMparticleswithhighcyclicdurability[J].Small,2024,20(24):2310252.
[39]DIACONUBM,CRUCERUM,ANGHELESCUL.Acriticalreviewonheattransferenhancementtechniquesinlatentheatstoragesystemsbasedonphasechangematerials.Passiveandactivetechniques,systemdesignsandoptimization[J].Journalofenergystorage,2023,61:106830.
[40]CHOUREBK,ALAMT,KUMARR.AreviewonheattransferenhancementtechniquesforPCMbasedthermalenergystoragesystem[J].Journalofenergystorage,2023,72:108161.
[41]ZHAOY,ZHAOCY,MARKIDESCN,etal.Medium-andhigh-temperaturelatentandthermochemicalheatstorageusingmetalsandmetalliccompoundsasheatstoragemedia:atechnicalreview[J].Appliedenergy,2020,280:115950.
[42]ZHANGHJ,XUC,XINGJX,etal.EnhancingcyclicdurabilityinCaO-basedthermochemicalenergystoragebyZr-Yco-doping:mechanisticinsights[J].Solarenergymaterialsandsolarcells,2024,266:112680.
[43]TENGL,XUANYM,DAY,etal.ModifiedCa-loopingmaterialsfordirectlycapturingsolarenergyandhigh-temperaturestorage[J].Energystoragematerials,2020,25:836-845.
[44]ZHANGHJ,XUC,XUBW,etal.StudyonheattransportanalysisandimprovementmethodinasingleCaCO3pelletforthermochemicalenergystorage[J].Appliedthermalengineering,2024,248:123145.
[45]YANJ,ZHAOCY.ExperimentalstudyofCaO/Ca(OH)2inafixed-bedreactorforthermochemicalheatstorage[J].Appliedenergy,2016,175:277-284.
[46]XUC,XIEYY,LIAOZR,etal.NumericalstudyonthedesorptionprocessofathermochemicalreactorfilledwithMgCl2•6H2Oforseasonalheatstorage[J].Appliedthermalengineering,2019,146:785-794.
[47]DENGJL,GUCD,XUHR,etal.MgCr2O4-modifiedCuO/Cu2Oforhigh-temperaturethermochemicalenergystoragewithhighredoxactivityandsinteringresistance[J].ACSappliedmaterials&interfaces,2022,14(38):43151-43162.
[48]CHEJB,WANGFN,SONGC,etal.Amulti-scalemodelingofCa-basedmaterialforsolar-drivencalcium-loopingenergystorageprocess:fromcalcinationreactortoenergycarrier[J].Chemicalengineeringscience,2024,293:119995.
[49]TIANXK,GUOSJ,JIANGL,etal.IntegratedoperationandefficiencyanalysisofCaCO3/CaOinafixed-bedreactorforthermochemicalenergystorage[J].Energy,2024,294:130867.
[50]ESENCET,GUILLOTE,TESSONNEAUDM,etal.Solarcalcinationatpilotscaleinacontinuousflowmultistagehorizontalfluidizedbed[J].Solarenergy,2020,207:367-378.
[51]MOUMING,TESCARIS,SUNDARRAJP,etal.Solartreatmentofcohesiveparticlesinadirectlyirradiatedrotarykiln[J].Solarenergy,2019,182:480-490.
[52]RINCONDUARTEJP,KRIECHBAUMERD,LACHMANNB,etal.SolarcalciumloopingcycleforCO2capturinginacementplant.Definitionofprocessparametersandreactorsselection[J].Solarenergy,2022,238:189-202.
[53]OLYMPIOSAV,MCTIGUEJD,FARRES-ANTUNEZP,etal.Progressandprospectsofthermo-mechanicalenergystorage——acriticalreview[J].Progressinenergy,2021,3(2):022001.
[54]杨鹤,杜小泽.布雷顿循环热泵储能的性能分析与多目标优化[J].中国电机工程学报,2022,42(1):196-210.
[55]YANGH,LIJD,GEZH,etal.DynamiccharacteristicsandcontrolstrategyofpumpedthermalelectricitystoragewithreversibleBraytoncycle[J].Renewableenergy,2022,198:1341-1353.
[56]YANGH,LIJD,GEZH,etal.DynamicperformancefordischargingprocessofpumpedthermalelectricitystoragewithreversibleBraytoncycle[J].Energy,2023,263:125930.
[57]YONGQQ,JINKY,LIXB,etal.Thermo-economicanalysisforanovelgrid-scalepumpedthermalelectricitystoragesystemcoupledwithacoal-firedpowerplant[J].Energy,2023,280:128109.
[58]BLANQUICETHJ,CARDEMILJM,HENRÍQUEZM,etal.Thermodynamicevaluationofapumpedthermalelectricitystoragesystemintegratedwithlarge-scalethermalpowerplants[J].Renewableandsustainableenergyreviews,2023,175:113134.
[59]MCTIGUEJ.“Carnotbatteries”forelectricitystorage[R/OL].(2019-12-04).https://www.nrel.gov/docs/fy20osti/75559.pdf.
[60]圣力,薛新杰,孛衍君,等.基于相变储能介质热泵储电系统的模拟与分析[J].储能科学与技术,2022,11(11):3649-3657.