向量数据库的商业化探索在大模型兴起之前,传统数据库已经在不断尝试与AI结合,主要涉及以下几个方向:AI for DB、DB for AI、预测估算。随着大模型的兴起,可以看到在这些方向上,数据库与AI间的关联比以往任何时候都要密切。在“AI for DB”方面,将AI技术嵌入到传统数据库中,使其具备更智能的功能。例如,通过大模型,数据库可以实现更高级的数据分析、智能搜索和推荐等功能。AI技术的应用使得数据库能够更好地理解和处理数据,提供更精确的查询结果和分析报告。对于“DB for AI”方面,传统数据库可以为大模型提供结构化数据和非结构化数据高效的存储和查询能力。由于大模型通常需要处理大规模的数据,传统数据库的可伸缩性和性能变得尤为重要。数据库可以通过融合查询和差异化存储等技术,提供快速的数据访问和处理能力,满足大模型对数据的高效需求。此外,大模型的兴起还为数据库注入了预测估算的能力。大模型可以通过学习历史数据和模式,对未来的趋势和结果进行预测和估算。传统数据库可以集成模型,实现对数据的预测分析。这使得数据库可以不仅提供对历史数据的查询和分析,还能够提供对未来数据的预测和估算结果,帮助用户做出更准确的决策。事实上,不仅是大模型厂商,云计算厂商凭借在AI基础设施、商业生态、市场规模效应方面的已有优势,也开始聚焦向量数据库市场进行各种技术和商业化尝试,这些尝试或许会让向量数据库加速走向商业成功。首先,多元化部署能力。垂直行业大模型,数据都是私有机密的,客户一般不愿意放到公有云上,这对一部分支持混合多云的云厂商是一大利好,通过私有部署、分布式、混合云等多种方案,打消行业客户将数据放到云端的现实疑虑。其次,一体化AI能力。向量数据库的火爆,本质是由AI驱动的,而AI Native时代的数据工程,还有许多复杂问题尚待解决,比如检索效率,在处理大规模数据的并行任务时,保持快速响应时间是一个挑战,需要优化索引结构和搜索算法;高负载下的系统稳定性,需要确保数据库系统具备高可用性和容错能力,防止服务中断;存储海量的向量数据,成本效益比要进一步优化……目前来看,云厂商具备从底层算力集群、Maas模型平台到全栈工具链的AI能力,有望通过技术协同创新,持续优化向量数据库的性能和成本。第三,产业服务能力。各行业对AI与业务的结合热情高涨,但大多还处于尝试探索期,需要结合自身场景、AI应用、IT设施等多种因素试错并迭代。这个过程中,随叫随到、帮助客户及时解决问题的ToB服务能力,也是非常看重的。深耕产业的公有云,有望降低很多企业在AI技术革命中的机会成本。从某种程度上而言,无论是向量数据库,还是大模型,归根结底,人们在追捧它时的心态,焦虑大于需求。而这种焦虑则来源于“害怕被落下”。而向量数据库的热潮,在一定程度上外化了人们的焦虑。但这并不能否定向量数据库的实际价值,甚至更长远的价值。虽然,目前向量数据库仍处于发展初期,但可以确定的是,向量数据库与大模型一定是捆绑关系。因此,未来其演进方向也一定随着大模型能力的演进而发生变化。不可否认的是,向量数据库的未来有星辰大海,也有曲折的前路。背靠大模型,向量数据库成为资本追捧的“宠儿”。然而,在未来的AGI时代,向量数据库还有更多实事要干。