首页
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
更多
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
北京理工大学材料学院:超表面智能变辐射技术方面取得重要进展
学术
2024-11-03 12:36
江西
近日,北京理工大学材料学院李静波和金海波教授团队在超表面智能变辐射技术方面取得重要进展。相关研究以“Temperature-adaptive metasurface radiative cooling device with excellent emittance and low solar absorptance for dynamic thermal regulation”为题在国际知名期刊《 Advanced Photonics 》上发表。
全文链接:
https://www.researching.cn/articles/OJab6cb507c477279e
在全球能源日益紧张的背景下,对高能效、绿色节能和智能温度管理方案的需求变得愈加迫切。辐射制冷(Radiative cooling)作为一种新兴的绿色无源被动制冷技术,近年来备受关注。该技术能够反射大量太阳辐射热(即材料具有高的太阳反射率),同时通过大气窗口(8 ~ 14μm)使地球表面上的物体向温度为3 K的外太空辐射热量实现降温(即材料具有高发射率),有助于缓解日益严峻的能源危机。然而,已报道的被动辐射制冷材料多为静态发射率材料,意味着在低温环境下,这些材料依然保持强的辐射能力,容易引发“过制冷”现象,从而加剧供暖系统的能耗。
为解决“过制冷”问题,发射率动态可调的辐射制冷材料和器件应用而生。这类材料和器件能够根据环境温度变化调节发射率,实现“高温-制冷”和“低温-保暖”的动态热管理效果。其中,热致变色二氧化钒(VO
2
)材料结合非对称法布里-珀罗(F-P)谐振腔设计的辐射制冷器件(Temperature-adaptive radiative cooling device,ATRD)能够自发响应环境温度变化而调节发射率,被认为是一种极具前景的动态热管理解决方案。然而,VO
2
材料对太阳光具有高吸收率,这导致ATRD器件在实现低太阳能吸收率和高热红外发射率之间相互制约,即提高发射率会增加太阳能吸收率,反之亦然,限制了其应用潜力。
针对上述问题,北京理工大学李静波和金海波教授团队采用VO
2
超表面策略,设计并制备了一种温度自适应的超表面辐射制冷器件(Temperature-adaptive metasurface radiative cooling device,ATMRD)。通过超表面设计,不仅实现了发射率性能的进一步提升,同时显著降低了太阳吸收率,从而完美解决了低太阳能吸收率与高热红外发射率性能之间的相互制约问题。与传统的ATRD相比,ATMRD的太阳吸收率降低了7.54%,而高温发射率提高了13.3%。设计的ATMRD器件展现出优异的动态辐射热管理能力,器件工作示意图如图1所示。
图1 VO
2
超表面自适应辐射控温器工作示意图
本研究设计的温度自适应辐射制冷器件由三层结构组成:底部为对可见-红外高反射的金属层、中间为红外高透过的介质层,顶部为红外透过率可调的VO
2
层(见图2a)。研究者首先使用Tfcale光学软件对器件进行模拟,确定了最佳的结构组合为Ag/HfO
2
/VO
2
(命名为ATRD器件)。在此基础上,研究者将顶部的连续VO
2
膜设计为周期性方形结构(命名为ATMRD器件,见图2c, d),利用Ansys Lumerical FDTD软件建立了结构单元的模型。通过系统模拟,研究评估了方形单元的边长 L 和单元间隙宽度 G 对器件太阳吸收率和发射率的影响。模拟结果表明,当 L 为4 μm, G 为1 μm(L4-G1)时,ATMRD器件能够实现太阳吸收率和发射率的最佳协同优化(见图2e, f)。
图2 (a)、(c) ATRD 和 ATMRD 示意图。(b) 理想温度自适应辐射冷却工作图。(d) 设计的 ATMRD 的表面图案尺寸和横截面图。(e)、(f) ATRD 和 ATMRD 之间模拟的太阳吸收率和热发射率的比较。蓝线代表低温,红线代表高温。
通过模拟确定了器件的最佳结构参数后,研究者采用磁控溅射技术,结合光刻-剥离工艺,成功制备出了符合预期的温度自适应超表面辐射制冷器件。器件的实物图如图3a所示。形貌表征结果显示,制备出的器件各膜层结构致密、厚度均匀,且各层膜之间结合紧密。此外,器件表面微结构图案规整、均一,与模拟设计结果高度一致。
图3 ATMRD 器件的形貌。(a)器件实物照片,(b)截面SEM图和EDS分布图,(c)器件表面形貌SEM 图片
辐射制冷器件的发射率和太阳能吸收率的表征结果(图4)显示,ATRD和ATMRD器件的低温发射率几乎相近,约为0.15,但ATMRD L4-G1、L6-G1和L8-G1器件的高温发射率( ε
H
)分别达到0.85、0.89、0.84,比ATRD器件( ε
H
=0.75)分别提高了13.3%、18.7%和12.0%。L4-G1、L6-G1和L8-G1器件的Δ ε 均超过0.7,相较ATRD分别提升了20%、18.3%和18.3%。此外,ATMRD器件的太阳吸收率( α
sol
)显著低于ATRD器件,其中L4-G1结构的ATMRD器件在室温下的太阳吸收率为27.71%,较ATRD器件降低了7.54%。这些结果证明,采用二氧化钒超结构不仅显著提高了热辐射器件的红外发射率和调制性能,还大大改善了其太阳吸收性能。此外,论文采用FDTD电磁分析进一步揭示了VO
2
超表面激发多重电磁谐振增强高温电磁吸收的改性机理(图5)。
图4 不同温度下的热发射率光谱、发射率的热滞回线以及低温和高温下的太阳吸收率波谱。(a)、(e)、(i) ATRD、(b)、(f)、(j) ATMRD L4-G1、(c)、(g)、(k) ATMRD L6-G1 和 (d)、(h)、(l) ATMRD L8-G1。
图5 ATMRD 电磁响应模型和L x -G1 器件的FDTD 模拟计算结果。(a) 结构单元x-z 截面,(b) LC 等效电路示意图,(c) 平面结构ATRD 器件的电磁场分布图,(d)-(h) L4-G1 样品在不同入射波波长下的电磁场分布图,(i) L8-G1 样品在4.5 μm 波长下的电磁场分布图,(j) 和(k) L10-G1 样品在5.5 μm 和11 μm 波长下的电磁场分布图
最后,研究人员对实验制备的ATMRD器件进行了实际应用潜力评估。图6a和6b展示的模拟太阳光反射结果显示,VO
2
超结构设计有效降低了ATMRD器件的太阳能吸收率。与此同时,图6c和6d展示的红外热像仪结果表明,ATMRD器件在低温环境下表现出优异的保温性能,而在高温环境下则具备良好的散热效果。此外,器件的发射率对探测角度的依赖性较弱,进一步证明了其在不同应用场景中的稳定性能。这些评估结果表明,ATMRD在实际应用中具有广阔的前景。
图6 ATMRD器件性能验证实验。(a)模拟太阳光反射测试示意图,(b)不同器件在光源照射下的温度变化,(c)变温发射率测试示意图,(d)不同温度的辐射热图,(e)L4-G1在不同探测角度的辐射热图。
该成果通过模拟设计并利用磁控溅射沉积技术和微加工技术,成功制备了基于VO
2
的自适应辐射控温超结构器件(ATMRD)。研究证明了VO
2
超结构可协同优化基于F-P谐振腔结构的自适应辐射控温器件的热红外发射率和太阳吸收率,阐明了超结构几何参数对器件性能的影响规律,揭示了超结构激发多谐振增强发射率性能的机理。这些成果为VO
2
超结构功能器件的设计和开发提供了宝贵的理论基础和实践参考。
北京理工大学材料学院2020级博士生杨俊林为第一作者,李静波教授和金海波教授为本论文的通讯作者。
本文来自北京理工大学。
推荐阅读:
如何让更多人了解你的学术成果与产品?
实用!
Origin软件使用经典问题集锦
免费下载:
18款超实用软件轻松搞科研
合作 投稿 点击此处
欢迎留言,分享观点。点亮
在看
http://mp.weixin.qq.com/s?__biz=MzA4NDk3ODEwNQ==&mid=2698893276&idx=3&sn=e21a2718cff7e1be89ca2d8080d84728
材料科学与工程
材料类综合、全面、专业的平台。主要发布与材料相关的知识信息。包括前沿资讯,基础知识,科研产业,考研求职等。材料科学网:www.cailiaokexue.com。
最新文章
国际首款!这一芯片成功实现量产
北大《Nature》:反式结构钙钛矿太阳能电池晶面控制获重要进展
南京大学《Nature》子刊:二维材料助力光热催化产率提高3-4倍!
【材料课堂】八大金属材料成形工艺,你都知道吗?
《Nature》增刊:中国科研最强城市排行榜(2024)
斯坦福崔屹《Science》:硅阳极电池瞬态电压脉冲的容量恢复!
上海科大《Adv Mater》:4D打印彩色微电影!
【招聘】多伦多大学材料系邹宇教授课题组招2025年全奖博士生和博士后
西安交大《Nature》子刊:晶界元素偏聚与晶内纳米团簇协同实现近理论强度与大塑性变形
同济大学《AFM》:研发出稳定的仿生锌粉负极材料!
北京理工大学材料学院:超表面智能变辐射技术方面取得重要进展
"姜萍事件"调查结果通报,多方最新回应!
国家能源集团《Nature》:重大突破性进展,填补国际技术空白!
松山湖材料实验室《AFM》:共价键合策略实现固态锂电池电化学与机械性能的双重增强
《ACS Energy Letters》:高熵层状氧化物材料的最新进展
这所985在校研究生总量首超本科生,多所大学已本研“倒挂”…
《Materials Today》:纳米尺度下“冷焊”机制是什么?
华北电力大学最新《Science》!
东方理工大学与合作者的纯理论基础研究成果登上《Nature》!
高校规定博士毕业必须发核心论文!导师表态拒绝招收研究生
孙汉董院士:八小时出不了科学家
《AFM》:超高强度和大变形能力的纳米异质结构铜合金!
吉大《JACS》:首次在有机材料中实现“从无到有”的高压诱导发光!
重磅!教育部公布最新二级学科和交叉学科名单!
本科生登上国际顶刊《Science》?她,做到了!
751人!第十届中国科协青年人才托举工程拟资助名额公示
北航材料学院70周年特刊:《航空材料学报》2024年第44卷第5期目次
重磅:我国首个博士专业学位研究生学位论文与申请学位实践成果质量标准发布
新一代高性能FIB技术!诺贝尔奖技术助力FIB新革命
同济大学高强度耐高温金属氧化物气凝胶取得重要研究进展!
南大《Science》:清洁能源提取关键资源!
多位院士+杰青报告!3D打印高分子材料国际高峰论坛详细议题请查阅
MDPI首届化学学科峰会暨MDPI (中国) 化学科学委员会聘任仪式圆满落幕
哈佛大学《Nature Materials》:量身定制!实现自动开发柔性机械超材料
华中科技大学:模拟月壤真空烧结试样的激光焊接研究!
【最新议程】沃兰特、峰飞、御风未来、亿航、沃飞长空、尚飞航空、零重力、山河星航、敏实等齐聚11月深圳低空飞行器创新材料及工艺峰会
第四届航空航天增材制造大会在沪成功举办!
@人民日报推荐:大学该做的50件事,收藏参考!
哈工大(深圳)顶刊:二维集成电路领域取得重要研究进展!
西工大《Angew》:近红外窄带发射含硼有机材料领域取得新进展
《国家自然科学基金条例(修订草案)》审议通过!
《Science》:纳米晶材料中的晶粒旋转机制!
官方发文!使用AI生成材料,列为失信行为!
南开大学《JACS》:摒弃传统正极-电解液界面离子传输模式!超快动力学钠电最新进展
网传北师大教授与女下属建立“永久亲密关系”?北师大回应
《Acta Materialia》:珠光体中的微观氢致塑形!
RAL第九届“材料加工工程研究生学术论坛”报名即将结束!
西工大:500 Wh/kg超高比能锂金属软包电池
自主研制!国之利器12000米深智钻机成功交付!
华南理工大学:一种用于阴茎增大的聚乙烯醇水凝胶新型补片!
分类
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
原创标签
时事
社会
财经
军事
教育
体育
科技
汽车
科学
房产
搞笑
综艺
明星
音乐
动漫
游戏
时尚
健康
旅游
美食
生活
摄影
宠物
职场
育儿
情感
小说
曲艺
文化
历史
三农
文学
娱乐
电影
视频
图片
新闻
宗教
电视剧
纪录片
广告创意
壁纸头像
心灵鸡汤
星座命理
教育培训
艺术文化
金融财经
健康医疗
美妆时尚
餐饮美食
母婴育儿
社会新闻
工业农业
时事政治
星座占卜
幽默笑话
独立短篇
连载作品
文化历史
科技互联网
发布位置
广东
北京
山东
江苏
河南
浙江
山西
福建
河北
上海
四川
陕西
湖南
安徽
湖北
内蒙古
江西
云南
广西
甘肃
辽宁
黑龙江
贵州
新疆
重庆
吉林
天津
海南
青海
宁夏
西藏
香港
澳门
台湾
美国
加拿大
澳大利亚
日本
新加坡
英国
西班牙
新西兰
韩国
泰国
法国
德国
意大利
缅甸
菲律宾
马来西亚
越南
荷兰
柬埔寨
俄罗斯
巴西
智利
卢森堡
芬兰
瑞典
比利时
瑞士
土耳其
斐济
挪威
朝鲜
尼日利亚
阿根廷
匈牙利
爱尔兰
印度
老挝
葡萄牙
乌克兰
印度尼西亚
哈萨克斯坦
塔吉克斯坦
希腊
南非
蒙古
奥地利
肯尼亚
加纳
丹麦
津巴布韦
埃及
坦桑尼亚
捷克
阿联酋
安哥拉