使用 查询分离 后 从20s优化到500ms

科技   2024-11-18 08:15   河北  

大家好,我是华仔~

欢迎加入华仔的星球,你将获得: 专属的中间件专栏 / 1v1 提问 / 简历修改指导/ 学习打卡 / 每月赠书 / 社群讨论

截止目前,累计输出 500w+ 字,讲解图 2000+ 张,还在持续爆肝中.. 后续还会上新更多项目和专栏,目标是打造地表最强中间件星球,戳我加入学习,已有440+小伙伴加入电商实战项目火热更新中,结束时会有简历指导包装,需要的抓紧来

这里说几点,解答一些疑惑,可以认真看下:

1、星球内容只会越来越完善,价格越来越贵,一年时间从69元开始发售到现在已经涨到了199元,现特惠期间只需 169元(文末有最新优惠券),还会继续涨价,所以需要抓紧来,越早越受益,别错过

2、只筛选认可且支持我的老铁,我不喜欢白嫖怪,尊重别人就是尊重自己。

3、对于星球年费说下,只是到期后新内容看不到,已经更完的内容相当于一次付费永久看,所以认可我内容的可以放心来,有疑问文末加我好友进行答疑

4、除专栏外,我会提供专属的一对一答疑服务,包括不限于工作中、专栏中遇到的问题,简历修改指导、职业规划服务等。这也是星球的特色服务。

冷热分离固然是一个性价比高的解决方案,但也并不是银弹,仍然有诸多限制,比如:

  1. 查询冷数据慢
  2. 业务无法修改冷数据
  3. 冷数据多到一定程度系统依旧扛不住

此时如果需要解决以上问题,可以采用另外一种方案:使用 查询分离 优化业务主表数据大查询缓慢的问题

什么是查询分离?

查询分离从字面上来说非常容易理解,其实就是在写数据时保存一个备份数据到另外的存储系统,在查询时直接从另外的存储系统中获取数据,如下图:

查询分离

以上只是简单的架构图,其中有些细节还是需要深究,如下:

  1. 什么时候触发查询分离?
  2. 如何实现查询分离?
  3. 查询数据的存储系统选型?
  4. 查询数据如何使用?

查询分离的适用场景?

当你在实际业务中遇到以下情形,则可以考虑使用查询分离解决方案。

  • 数据量大;

  • 所有写数据的请求效率尚可;

  • 查询数据的请求效率很低;

  • 所有的数据任何时候都可能被修改;

  • 业务希望我们优化查询数据的功能。

曾做过 SaaS 客服系统的架构优化,系统里有一个工单查询功能,工单表中存放了几千万条数据,且查询工单表数据时需要关联十几个子表,每个子表的数据也是超亿条。

面对如此庞大的数据量,跟前面的冷热分离一样,每次客户查询数据时几十秒才能返回结果,即便我们使用了索引、SQL 等数据库优化技巧,效果依然不明显。

工单表中有些数据是几年前的,客户说这些数据涉及诉讼问题,需要继续保持更新,因此我们无法将这些旧数据封存到别的地方,也就没法通过前面的冷热分离方案来解决。

最终我们采用了查询分离的解决方案,才得以将这个问题顺利解决:将更新的数据放在一个数据库里,而查询的数据放在另外一个系统里。因为数据的更新都是单表更新,不需要关联也没有外键,所以更新速度立马得到提升,每次客户查询数据时,500ms 内就可得到返回结果。

什么时候触发查询分离?

简单的来说就是什么时候应该保存一份数据到查询数据库中,其实也就是数据异构的过程,详细文章可以看我前面一篇文章:数据异构就该这样做,yyds~

这里介绍三种方式,如下:

  1. 同步建立
  2. 异步建立
  3. binlog方式

1、 同步建立

修改业务代码:在写入常规数据后,同步建立查询数据。

该种方案优缺点也非常明显:

优点:查询数据的一致性和实时性得到了保证

缺点:业务代码侵入比较强;减缓写操作的效率

2、 异步建立

修改业务代码:写入数据后,异步建立查询数据

该种方案的优缺点如下:

优点:不影响主流程

缺点:数据一致性存在问题

3、 binlog的方式

该种方案也是业界常用的一种方案,对于代码是无侵入的,通过监听数据库日志的方式建立查询数据,如下:

该种方案的优缺点如下:

优点:不影响主流程;代码侵入为0

缺点:数据一致性存在问题;架构相对复杂

如何实现查询分离?

对于上述三种方案都算是比较常见的方案,对于第一种同步的方式比较简单,这里不再介绍;对于第三种binlog的方式在数据异构的文章中介绍过,详情见:数据异构就该这样做,yyds~

这篇文章来介绍一下异步的方式,异步的方式有很多,可以放在内存中进行操作,但是这有些弊端:

  1. 数据过多,内存有限
  2. 服务重启,内存数据将会丢失

因此最终我们可以选择MQ的方式,那么此时就涉及到了MQ的技术选型,这里给两个建议:

  1. 如果你的公司已经用了MQ,那么直接接着用即可
  2. 如果公司目前未引入MQ,则需要架构组考量选型了,对于MQ的选型可以看我之前文章:聊聊 MQ 技术选型

当然一旦引入了MQ还需要考虑的问题很多,如下:

1、 MQ突然宕机了怎么办?

MQ宕机意味着查询数据不能继续建立了,我们可以在写入数据的同时给该条数据加一个标志字段(已搬运、未搬运),当MQ启动后,查询所有未搬运的数据,继续建立查询数据

这里的方案很多,按照业务实际情况考量

2、消息的幂等消费

消息的幂等消费一定要保证,避免数据重复建立,比如:主数据的订单 A 更新后,我们在查询数据中插入了 A,可是此时系统出问题了,系统误以为查询数据没更新,又把订单 A 插入更新了一次。

3、消息的时序性问题

比如某个订单 A 更新了 1 次数据变成 A1,线程甲将 A1 的数据搬到查询数据中。不一会儿,后台订单 A 又更新了 1 次数据变成 A2,线程乙也启动工作,将 A2 的数据搬到查询数据中。

所谓的时序性就是如果线程甲启动比乙早,但搬运数据动作比线程乙还晚完成,就有可能出现查询数据最终变成过期的 A1

查询数据的存储系统选型?

既然为了解决表数据量大查询缓慢的问题,肯定是不能选用关系型数据库了,那么还有其他选择吗?

内存数据库虽然性能非常高,比如Redis,但是不适合海量数据,太费钱了

那么这里比较适用的有如下三种:

  1. MongoDB
  2. HBase
  3. Elasticsearch

这里选型还是要根据自己公司业务选择,如果已经有在用的,则直接用即可;另外就是选择自己熟悉的,比如当初我们设计架构方案时,为什么选择用 Elasticsearch,除 ES 对查询的扩展性支持外,最关键的一点是我们团队对 Elasticsearch 很熟悉。

查询数据如何使用?

查询数据很简单,每个数据库都有对应的API,直接调用查询

但是,这里有一个问题:数据查询更新完前,查询数据不一致怎么办?,给出两种方案:

  1. 在查询数据更新到最新前,不允许用户查询。(我们没用过这种设计,但我确实见过市面上有这样的设计。)

  2. 给用户提示:您目前查询到的数据可能是 1 秒前的数据,如果发现数据不准确,可以尝试刷新一下,这种提示用户一般比较容易接受。

总结

本篇文章介绍了表数据量大查询缓慢的一种解决方案:查询分离,但这也不是银弹,仍然是存在一些不足,比如表数据量大,写入缓慢怎么办?这个后面文章再介绍吧

当然查询分离还有一个重要的问题:历史数据如何迁移?这个处理也是非常简单,但是也有许多需要考虑的点,后文介绍

推荐(求关注,别白嫖!)


最后推荐下两个不错的产品感兴趣的可以
上车了,这里只吸引同频的人,如果加入几分钟
就直接退出的就不要来了,浪费我的名额。

第一个来自码哥的小报童,仅需 19 元,火热更新中
,需要的可以扫码加入。

本专栏内容涵盖 Java 基础、Java 高级进阶、Redis、MySQL、消息中间件、微服务

架构设计等面试必考点、面试高频点。本专栏不只是单纯教大家学会背八股文知识,

更多是结合实际大厂高并发项目的场景,去学习面试技术要点。从面试官的角度去出

发,介绍互联网 Java 流行技术体系各个面试要点。

本专栏适合于准备进阶 Java 后端技术、有面试或提升技术需求,希望学习互联网大

厂 Java 流行技术体系的程序员和面试官,助你拿到名企高薪 Offer。






第二个是我的知识星球,特惠期间只需 169 元,需要的可以扫码加入,
加入后送上面技术小册,即 150 元。

关于星球介绍点击:

超 500 万字详解,从零到一带你彻底吃透 Kafka + RocketMQ

小红书实战





需要续费的扫这个,优惠15元


另外必须要注意的是上车的老铁一定要加我微信
好友,拉你们加入星球专属交流群。

华仔聊技术
聊聊后端技术架构以及中间件源码
 最新文章