Nature Communications | Floquet拓扑耗散Kerr孤子与非公度频率梳

文摘   科技   2024-11-21 08:01   四川  

引言

使用具有Kerr非线性的微环谐振器产生相干光频梳,显著推进了对时域耗散孤子及其应用的基础认识。传统的Kerr频率梳的特点是在频率上呈现相位锁定、等距分布的谱线。然而,最新研究发现了一种新型的Floquet拓扑孤子频率梳,这种频率梳出现在利用Floquet拓扑设计的二维强耦合谐振器阵列中[1]。


Floquet拓扑孤子系统基础

该系统由二维方形环形谐振器阵列构成,谐振器之间通过近场耦合与最近邻谐振器相连。谐振器间的耦合强度取决于在阵列中的位置,参数化为κa = sin(θA)和κb = sin(θB)。这种排列形成了包含四个谐振器的单元,使阵列可以容纳最多四个能带。

图1:(a)产生Floquet拓扑频率梳的二维环形谐振器阵列示意图,(b,c)AF相位中的传输谱和能带结构,(d-f)边缘态和体态的强度分布。


这些能带的拓扑性质由耦合强度κa和κb决定。当谐振器之间的耦合强度与自由光谱范围(FSR)相当时,系统表现出非平凡的拓扑性质。在这种强耦合状态下,系统被视为Floquet系统,因为无法用常规的有效哈密顿量和单模近似来描述。


反常Floquet相位中的非公度频率梳

在反常Floquet(AF)相位中,边缘态出现在特定归一化频率失谐附近的所有能带隙中。这种相位被称为"反常",是因为即使所有能带的陈数为零,边缘态仍然存在。

图2:(a-c)AF相位中的能带结构和吸收谱,(d)显示相位锁定超级孤子分子的强度分布,(e)显示超级孤子脉冲的时域输出,(f-h)显示非公度性质的输出频率梳谱。


当在边缘态共振附近泵浦时,阵列边缘形成Floquet超级孤子分子。在这种状态下,边缘上的三个不同环谐振器各自包含一个相位锁定的单孤子,环中相对位置保持不变。


AF相位中的公度频率梳

通过调节耦合参数并保持在AF相位中,可以产生规则间隔的公度频率梳。

图3:(a,b)显示减小体带宽的能带结构和吸收谱,(c)频率梳功率变化,(d)显示单个超级孤子环绕的强度分布,(e-h)显示规则频率梳产生的时域和频域输出。


当选择耦合参数θA = 0.49π和θB = 0.01π时,该系统仍处于反常Floquet相位,但显著减小了体能带宽度,同时增加了边缘能带宽度。在泵浦频率失谐δωp = 0.40994ΩR时,观察到阵列中形成单个超级孤子。在这种状态下,边缘上只有一个环谐振器包含单个孤子,沿逆时针方向环绕阵列。相应的,时域输出包含单个脉冲,以超环谐振器的往返时间τSR(约17τR)重复。


陈绝缘体相位中的孤子分子

陈绝缘体(CI)相位呈现三个体能带,其中两个具有非零陈数,表现出拓扑非平庸性。这三个体能带被两个边缘能带分隔。

图4:(a,b)CI相位中的能带结构和吸收谱,(c)泵浦功率变化,(d)显示在交替边缘环中形成孤子的强度分布,(e-h)显示单一边缘模式振荡的时域和频域输出。


当在边缘态共振附近调节泵浦频率至δωp = 0.0964ΩR,并调整归一化输入泵浦场至Ein = 0.025时,可以观察到一种全新的孤子分子状态:除了始终存在孤子的角落环外,边缘上的交替环各自精确包含一个孤子。这些孤子在环中的位置保持相位锁定,随时间推移,这种强度分布在阵列中保持稳定。


Floquet频率梳的鲁棒性和可调谐性

图5:(a)边缘态绕过阵列缺陷的路径,(b,c)具有修改线间距的产生频率梳谱,(d-g)展示无相干损失的孤子绕路演示。


拓扑边缘态的一个关键特征是对缺陷和无序的鲁棒性。这种特性在强非线性存在的情况下仍然适用于Floquet拓扑孤子。系统可以在标准光子技术平台上实现,如硅氮化物平台,典型参数包括250GHz的FSR、1 MHz的色散以及约8×106的本征品质因数。产生非公度孤子频率梳所需的泵浦功率约为0.6 W,这与典型的Kerr频率梳产生相当。


总结

Floquet拓扑耗散Kerr孤子和非公度频率梳代表了光频率梳领域的重要进展。这种新型频率梳超越了传统频率梳等距频率的定义,为精密测量、光谱学、光通信和光量子技术提供了新的研究方向。这些系统的鲁棒性和可调谐性,加上在存在缺陷时保持相干性的能力,使其在实际应用中具有独特优势。实验参数与现有技术平台兼容,预示着这项技术具有实现的可行性。随着这一领域的持续发展,强耦合非线性谐振器阵列结合Floquet和拓扑设计原理,将在光操控和频率梳产生方面取得更多进展。


参考文献

[1] S. D. Hashemi and S. Mittal, "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, vol. 15, no. 9642, pp. 1-9, 2024, doi: 10.1038/s41467-024-53995-8.


END


软件申请
我们欢迎化合物/硅基光电子芯片的研究人员和工程师申请体验免费版PIC Studio软件。无论是研究还是商业应用,PIC Studio都可提升您的工作效能。

点击左下角"阅读原文"马上申请


欢迎转载


转载请注明出处,请勿修改内容和删除作者信息!




关注我们



                      




关于我们:

深圳逍遥科技有限公司(Latitude Design Automation Inc.)是一家专注于半导体芯片设计自动化(EDA)的高科技软件公司。我们自主开发特色工艺芯片设计和仿真软件,提供成熟的设计解决方案如PIC Studio、MEMS Studio和Meta Studio,分别针对光电芯片、微机电系统、超透镜的设计与仿真。我们提供特色工艺的半导体芯片集成电路版图、IP和PDK工程服务,广泛服务于光通讯、光计算、光量子通信和微纳光子器件领域的头部客户。逍遥科技与国内外晶圆代工厂及硅光/MEMS中试线合作,推动特色工艺半导体产业链发展,致力于为客户提供前沿技术与服务。


http://www.latitudeda.com/

(点击上方名片关注我们,发现更多精彩内容)

逍遥设计自动化
分享特色工艺半导体(PIC/Power/MEMS)设计自动化解决方案及行业技术资讯,与广大业界朋友、专家共同交流!
 最新文章