培训 | 人工智能Python数据分析、机器学习与深度学习及科研项目实战

学术   2024-11-14 07:53   上海  



01


培训概览


本课程旨在通过全面、系统的学习,使学员掌握Python在科研领域中的应用,特别是如何利用人工智能技术推动科研进展。课程内容涵盖了从基础的Python编程到高级的机器学习和深度学习算法,逐步引导学员掌握科研数据分析、模型设计与训练、以及科研绘图等关键技能。同时,课程特别强调人工智能在科研写作、和数据处理中的实际应用,帮助学员高效完成科研任务。课程通过详细的理论讲解和丰富的课堂动手练习,让学员深入理解和掌握各类人工智能算法的原理与应用方法。
课程内容包括Numpy和Matplotlib等科学计算和绘图工具的学习,机器学习算法的应用与优化,以及深度学习算法在图像识别和目标检测中的实际应用。特别设置的案例分析环节,通过介绍各种跟科研相关的实际项目,帮助学员将所学知识应用到具体的科研项目中。此外,课程还介绍了最新的人工智能技术,如YOLOv10目标检测与分割算法和大语言模型ChatGPT在科研中的应用,全面提升学员的科研能力和创新水平。通过本课程的学习,学员不仅能够独立完成SCI论文中的各类数据分析和模型构建任务,还能够在科研过程中有效应用人工智能技术,提高科研效率和成果质量。

02


培训优势

1.参加一次培训,以后本人可以终身免费参加相关现场及直播课程,不限次数,学会为止;
2.从最基础入门的操作和概念开始学习逐步提升,有无基础均可报名;
3.针对实际SCI论文和实际人工智能应用项目进行解读分析,详细Python人工智能算法如何应用于SCI论文写作和实际项目应用;
4.课程内容包含大量实际案例操作,深度剖析Python人工智能算法在科研学术和项目应用中的最佳应用;
5.每天都会有专门的课堂实操练习,确保学员掌握实际操作细节;
6.建立课程群,提供永久答疑服务。课程结束后提供完整课程视频回放;
7.此次课程限定50人,报名敬请从速,前30人报名可获得往届的培训视频及资料。

03


培训收获


1.掌握Python编程基础:通过系统的学习和实践,掌握Python的基本语法、数据结构、控制流、函数和模块等编程技能,为后续的人工智能应用打下坚实基础;
2.熟悉科研数据分析工具:学会使用Numpy进行科学计算,掌握Matplotlib的绘图技巧,能够对科研数据进行有效的分析和可视化,为科研项目提供数据支持;
3.了解人工智能算法:深入理解机器学习和深度学习的核心概念和常用算法,如线性回归、KNN、SVM、CNN、LSTM等,并能在科研项目中应用这些算法进行数据建模和预测分析;
4.应用人工智能解决科研问题:通过实际案例学习,掌握数据预处理、特征工程、模型构建与优化等全过程,提升解决实际科研问题的能力;
5.掌握最新人工智能技术:学习并应用YOLOv10等最新目标检测与分割算法,提高科研工作的效率和成果质量;
6.SCI论文写作与优化技能:通过详细解读经典SCI论文,掌握科学研究的规范和写作技巧,学会如何利用人工智能技术进行数据分析、模型训练和结果展示,提升科研论文的写作水平和发表成功率。

04


时间及培训形式


2024年11月19日 — 11月21日
北京现场/腾讯会议平台授课3天
  • 参加一次培训,以后本人可以终身免费参加相关现场及直播课程,不限次数,学会为止;
  • 报名缴费后提前获取电子讲义及模型,可提前预习;
  • 建立课程群,提供永久答疑服务,课程结束后提供完整课程视频回放。


04


主讲专家
中国科学院、清华大学等科研机构的高级专家,人工智能领域一线实战专家,12年人工智能项目开发经验,10年人工智能行业培训经验。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。主持完成过多项国家及企业重大项目,拥有20项专利,出版人工智能相关书籍3本,曾给学校、医院、企业、气象局等单位完成过多项人工智能相关项目。受邀为中国移动、中国电信、中国银行、华夏银行、太平洋保险、国家电网、中海油、格力电器等包括世界五百强在内的多家高校及企业做人工智能技术企业内训。业内顶尖IT培训平台30万学员好评率99%;


05


培训大纲


大章节

小章节

第一章:常见人工智能项目应用案例分析


1.基于摄像头的保安巡更系统

2.云种类识别

3.用户评论情感分类

4.甲状腺CT图像分类

5.工业缺陷检测

6.汽车部件安装检测


第二章:Python人工智能在科研领域中的应用介绍


1.人工智能在科研写作中的应用

2.人工智能在科研翻译中的应用

3.人工智能在科研数据分析中的应用

4.人工智能的科研绘图中的应用

5.人工智能的科研模型设计和训练中的应用

6.人工智能技术的各种应用场景


第三章:Python环境介绍


1.python集成环境-Anaconda安装

2.python开发环境-pycharm介绍

3.pytthon开发环境-jupyter配置

4.jupyter基本使用


第四章:python基础学习


1.python的应用场景

2.(课堂动手练习)python环境安装配置

3.(课堂动手练习)print使用

4.(课堂动手练习)运算符和变量

5.(课堂动手练习)循环

6.(课堂动手练习)列表元组字典

7.(课堂动手练习)if条件

8.(课堂动手练习)函数

9.(课堂动手练习)模块

10.(课堂动手练习)类的使用

11.(课堂动手练习)文件读写

12.(课堂动手练习)异常处理


 

 

第五章:科学计算模块Numpy学习


1.(课堂动手练习)numpy的属性

2.(课堂动手练习)创建array

3.(课堂动手练习)numpy的运算

4.(课堂动手练习)随机数生成以及矩阵的运算

5.(课堂动手练习)numpy的索引


 

第六章:绘图工具包matplotlib学习


1.(课堂动手练习)基础用法

2.(课堂动手练习)figure图像

3.(课堂动手练习)设置坐标轴

4.(课堂动手练习)legend图例

5.(课堂动手练习)scatter散点图


第八章:机器学习常用算法(课堂练习中学员自己完成)


1.(课堂动手练习)线性回归算法介绍与使用    

2.(课堂动手练习)Lasso回归算法介绍与使用

3.(课堂动手练习)KNN算法介绍与使用     

4.(课堂动手练习)SVM算法介绍与使用

5.(课堂动手练习)K-means算法介绍与使用  

6.(课堂动手练习)XGBoost算法介绍与使用

7.(课堂动手练习)LightGBM算法介绍与使用

8.(课堂动手练习)所有的机器学习算法使用技巧总结分析

9.(课堂动手练习)用自己的数据完成机器学习算法训练


第九章:机器学习中的数据特征工程


1.特征工程的意义

2.缺失值填充方法

3.数字类型特征处理

4.多值有序特征和多值无序特征处理

5.特征筛选方法

6.数据标准化和归一化处理


 

第十章:机器学习案例在项目中的应用(课堂动手练习)用


1.相关论文内容解读,并分析该项目如何应用于论文写作

2. 项目简介

 - 目标定义:开发一个机器学习模型,用于数据预测。

3. 数据预处理

 - 数据加载:载入数据集,并初步查看数据结构和基本统计信息

 - 数据清洗:识别并处理数据集中的异常值和缺失值。使用适当的方法填充缺失值(例如,均值填充)

 - 特征工程:分析各特征与标签值的关系。选择合适的特征进行模型训练

4. 探索性数据分析

 - 利用Seaborn的pairplot绘制不同特征之间的关系

 - 绘制热力图分析特征之间的相关性

5. 模型构建与训练

 - 选择模型:选择多个分类算法(如K-近邻、逻辑回归、神经网络、决策树、随机森林等)进行比较

6. 模型评估与优化

 - 结果可视化:使用条形图展示不同模型的性能比较

 - 模型解释:使用SHAP值解释模型的预测结果,以了解哪些特征对模型预测结果影响最大

7. 项目总结

 - 评估模型表现:综合评估模型的准确性和可解释性

 - 讨论与改进:基于模型表现,讨论可能的改进方法和实际应用中的潜在挑战


第十一章:机器学习算法在SCI论文中的应用


1.详细解读几篇经典SCI论文,展示机器学习算法的实际应用

2.逐篇论文解读,突出算法的选择理由、应用过程和结果分析

3.研究背景和问题定义:介绍论文所解决的问题和研究背景

4.数据处理和特征工程:讨论数据预处理方法和特征工程步骤

5.算法选择和模型构建过程:解释为何选择该深度学习算法,并描述模型的构建过程

6.模型评估和结果讨论:评估模型性能,讨论实验结果及其意义


第十二章:AI在数据绘图中的应用


1.(课堂动手练习)根据本地数据绘制散点图,折线图,柱状图,饼图等

2.(课堂动手练习)绘制不同特征之间的相关系数图

3.(课堂动手练习)绘制不同数据特征的多变量联合分布图

4.(课堂动手练习)绘制数据缺失值可视化图

5.(课堂动手练习)绘制不同模型算法的结果对比图

6.(课堂动手练习)绘制模型算法的ROC曲线图

7.(课堂动手练习)绘制特征重要性排序图

8.(课堂动手练习)其他各种图像的AI自动绘图方法


第十三章:深度学习算法基础-神经网络


1.单层感知器

2.激活函数,损失函数和梯度下降法

3.BP算法介绍

4.梯度消失问题

5.多种激活函数介绍

6.(课堂动手练习)BP算法解决手写数字识别问题


第十四章:模型算法优化方法


1.(课堂动手练习)Mnist数据集和softmax讲解

2.(课堂动手练习)使用BP神经网络识别图片

3.(课堂动手练习)交叉熵(cross-entropy)讲解和使用

4.(课堂动手练习)欠拟合/正确拟合/过拟合

5.(课堂动手练习)各种优化器Optimizer

6.(课堂动手练习)模型保存和模型载入方法


第十五章:深度学习算法-卷积神经网络CNN应用


1.CNN卷积神经网络介绍

2.卷积的局部感受野,权值共享介绍。

3.卷积的具体计算方式

4.池化层介绍(均值池化、最大池化)

5.LeNET-5卷积网络介绍

6.(课堂动手练习)CNN手写数字识别案例


第十六章:深度学习算法-长短时记忆网络LSTM应用


1.RNN循环神经网络介绍

2.RNN具体计算分析

3.长短时记忆网络LSTM介绍

4.输入门,遗忘门,输出门具体计算分析

5.堆叠LSTM介绍

6.双向LSTM介绍

7.(课堂动手练习)使用LSTM进行基因序列能量预测


第十七章:基于迁移学习的深度学习图像识别项目(课堂练习中学员自己完成)


1.VGG16模型详解

2.ResNet模型详解

3.ConvNeXt模型详解

4.(课堂动手练习)下载训练好的1000分类图像识别模型

5.(课堂动手练习)使用训练好的图像识别模型进行各种图像分类

6.(课堂动手练习)使用迁移学习训练气象图像分类模型

7.(课堂动手练习)训练自己的图像分类数据集


第十八章:深度学习算法在SCI论文中的应用


1.详细解读几篇经典SCI论文,展示深度学习算法的实际应用

2.逐篇论文解读,突出算法的选择理由、应用过程和结果分析

3.研究背景和问题定义:介绍论文所解决的问题和研究背景

4.数据处理和特征工程:讨论数据预处理方法和特征工程步骤

5.算法选择和模型构建过程:解释为何选择该深度学习算法,并描述模型的构建过程

6.模型评估和结果讨论:评估模型性能,讨论实验结果及其意义

第十九章:Faster-RCNN系列模型讲解


1.目标检测项目简介

2.R-CNN模型详解

3.SPPNET模型详解

4.Fast-RCNN模型详解

5.Faster-RCNN模型详解


第二十章:YOLO算法介绍与应用


1.YOLOv1结构及工作流程

2.YOLOv1代价函数讲解以及缺点分析

3.YOLOv2网络结构Darknet-19讲解

4.YOLOv2精度优化-高分辨率和anchor

5.YOLOv2精度优化-维度聚类

6.YOLOv2精度优化-直接位置预测

7.YOLOv2精度优化-细粒度特征和多尺度训练

8.YOLOv3结构讲解

9.YOLOv4算法讲解

10.YOLOv5算法讲解


第二十一章:最新目标检测算法YOLOv10目标检测应用(课堂练习中学员自己完成)


1.YOLOv10检测模型介绍

2.(课堂动手练习)安装YOLOv10模型

3.(课堂动手练习)自行标注要检测的图像样本

4.(课堂动手练习)修改模型的配置文件

5.(课堂动手练习)训练YOLOv10目标检测模型

6.(课堂动手练习)使用训练好的YOLOv10进行图像预测


第二十二章:最新目标分割算法YOLOv10目标分割应用(课堂练习中学员自己完成)


1.YOLOv10分割模型介绍

2.(课堂动手练习)安装YOLOv10模型

3.(课堂动手练习)自行标注要分割的图像样本

4.(课堂动手练习)修改模型的配置文件

5.(课堂动手练习)训练YOLOv10图像分割模型

6.(课堂动手练习)使用训练好的YOLOv10进行图像分割


第二十三章:图像检测和分割算法算法在SCI论文中的应用


1.详细解读几篇经典SCI论文,展示图像检测和分割算法的实际应用

2.逐篇论文解读,突出算法的选择理由、应用过程和结果分析

3.研究背景和问题定义:介绍论文所解决的问题和研究背景

4.数据处理:讨论数据预处理方法

5.算法选择和模型构建过程:解释为何选择该深度学习算法,并描述模型的构建过程

6.模型评估和结果讨论:评估模型性能,讨论实验结果及其意义


第二十四章:自然语言处理任务


1.Transformer模型介绍

2.self-Attention

3.Multi-Head Attention

4.Bert模型介绍

5.MLM和NSP模型任务

6.使用Bert模型进行用户评论分类


第二十五章:大语言模型ChatGPT介绍


1.OpenAI最新模型-GPT4o介绍

2.国内大语言模型文心一言,通义千问,Kimi,智谱清言,星火认知使用介绍

3.ChatGPT辅助论文搜索与阅读

4.ChatGPT成为您的论文写作助手

5.ChatGPT辅助科研论文优化

6.不会写代码也能成为编程高手


辅助课程


1.课程总结及技术发展展望。

2.建立信群答疑群,课后提供答疑。

3.配备AIGC/GPT/AI绘图/人工智能、机器学习与深度学习教材,课后逐步提高能力。



06


收费标准

  

培训收费有三类,请您按自身需要灵活选择。

A类:3980元/人(含培训费、资料费、A类证书费、指导费、发票费等)

证书:中科软研(北京)科学技术中心颁发的课程结业证书;

B类:4980元/人(含培训费、资料费、A类+B类证书费、指导费、发票费等)

证书:教育部主管下属机构颁发的高级《大模型应用开发工程师》专业技术人才职业技能证书,纳入委员会数据库,全国通用可查;

C类:5980元/人(含培训费、资料费、A类+B类+C类证书费、指导费、发票费等)

证书:工信部下属机构颁发的高级《人工智能应用工程师》职业技能证书,该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据,官网可查。


07


优惠政策

1. 学生凭学生证优惠300元;

2. 2人报名每人可减少200元;

3. 3人报名每人可减少400元;

3. 5人以上(含)报名,另外赠送一个名额;

4. 以上优惠政策不能同时享受,只能享受其中一种。


08


报名方式


请识别下方二维码在线报名。报名成功后,我们会为您发送培训通知,并电话确认。

仿真学习与应用
优质仿真内容 | 优选仿真课程 | 优秀仿真平台
 最新文章