随着全球化的推进,香蕉作为世界上贸易量和消费量最大的水果之一,其重要性不言而喻。然而,香蕉叶病(如叶斑病、灰纹病和拟盘多毛菌病)却成为影响香蕉产量的一大难题。为了有效应对这一挑战,开发出一种创新的方法来识别香蕉叶病,将有助于实时检测病害并预警,减轻病害给农业生产带来的经济损失。
近期,中南林业科技大学电子信息与物理学院周国雄教授团队完成的题为“Identification of banana leaf disease based on KVA and GR-ARNet” 的研究在Journal of Integrative Agriculture (《农业科学学报》(英文),JIA) 2024年10期正式发表。该研究提出了一种新颖的方法来准确识别香蕉叶病。
该研究提出一种名为K-scale VisuShrinkd algorithm(KVA)的新型算法对香蕉叶片图像进行去噪,该算法在半软阈值和中程阈值的基础上引入新的分解尺度k,获得理想的阈值解,并用新建立的阈值函数进行替代,从而达到图像降噪的效果,得到噪声较小的香蕉叶片图像。
在Resnet50网络架构的基础上提出了一种香蕉叶病识别的新型网络,称为 Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)。其中,引入Ghost模块处理蕉叶病信息的冗余特征图,有利于网络对输入特征图信息全面理解,提高网络提取蕉叶病害深度特征信息的效率和识别速度;采用ResNeSt模块调整各通道的权重,增强蕉叶病有用特征信息的通道,抑制注意学习中噪声信息的通道,增强网络对深度特征的识别能力,提高蕉叶病特征提取能力,从而获取到详细的蕉叶病斑特征图,降低相似病害识别的错误率;利用RReLU和Swish的混合激活函数加快模型的训练速度,提高网络的泛化能力。实验结果显示,使用GR-ARNet对健康叶片和三种病害叶片的识别准确率分别为98.38%,96.42%,97.54%,和95.58%,平均识别准确率达到96.98%,显示出该模型具有良好的识别准确性,在农业病害防治中具有重要的应用价值。此外,未来的研究将着眼于开发易于果农使用的应用工具,使农民可以直接上传香蕉叶病图片,并得到及时的疾病诊断和相应的控制方法建议
Confusion matrix for the classification of banana leaf diseases
点击链接查看全文:
Jinsheng Deng, Weiqi Huang, Guoxiong Zhou, Yahui Hu, Liujun Li, Yanfeng Wang. 2024. Identification of banana leaf disease based on KVA and GR-ARNet. Journal of Integrative Agriculture, 23(10): 3554-3575.
研究团队简介
周国雄教授(第一排右5)
人工智能应用研究所成立于2012年,前身为“湖南省林业信息化研究中心”,于2019年更名为“人工智能应用研究所”,是中南林业科技大学校级科研平台。主要针对人工智能理论及林业生态人工智能应用开展研究。目前在图像处理、音频处理、鸟鸣声感知、病虫害识别、树种识别、蝴蝶识别和动物情感分析和行为分析、林火识别及蔓延仿真等方面有较好研究基础。人工智能应用研究所目前共有教师8人,其中教授2人,副教授2人,具有博士研究生学历的人员有8人。共有信息与通信工程、软件工程和电子信息硕士研究生50余名。
| 图文由中南林业科技大学周国雄教授团队提供
专题|棉花生物技术育种
Journal of Integrative Agriculture (《农业科学学报》(英文), JIA) 由中华人民共和国农业农村部主管,中国农业科学院与中国农学会主办,中国农业科学院农业信息研究所承办。综合性英文学术期刊,月刊。创刊于2002年,现任主编为中国科学院院士陈化兰。JIA主要栏目有作物科学、园艺、植物保护、动物科学、动物医学、农业生态环境、食品科学、农业经济与管理等。刊稿类型有综述、研究论文、简报以及评述等。全部论文在Elsevier-ScienceDirect (SD) 平台OA出版。最新SCI影响因子4.6,位于SCI-JCR农业综合学科Q1区。中科院分区农林科学1区。2016年以来先后获得中国科协等部委 “提升计划”“登峰计划”“卓越计划”项目支持。
欢迎加入JIA交流群
星标我们🌟,求分享、点赞+在看