内容简介
本研究论文聚焦基于离子液体的透明膜耦合人体肺上皮芯片在呼吸机械应力下揭示PM0.5污染效应。近年来,人类暴露于不同尺寸颗粒物(PM)的可能性不断增加。由于粉尘传输对气候和天气的影响,已在大气中检测到不同大小的颗粒物。肺上皮细胞作为调节器,负责协调对局部损伤的先天性免疫反应。本研究开发了一种肺上皮芯片平台,由易于模塑的聚二甲基硅氧烷(PDMS)层与一层薄而灵活的透明离子液体基聚(羟乙基)甲基丙烯酸酯凝胶膜组成。通过在该膜上培养人肺上皮细胞(Calu-3),形成了肺上皮细胞层。采用基于Arduino的伺服电机系统在吸气/呼气期间于气-液界面施加单轴拉伸力(10%应变,0.2 Hz频率),从而模拟机械应力。随后,在静态、动态和动态+机械应力(DMS)条件下向该芯片平台加入平均粒径为463 nm的二氧化硅纳米颗粒(PM0.5),以研究环境污染物对肺上皮的影响。通过测定乳酸脱氢酶释放及肿瘤坏死因子-α(TNF-α)的量化分析促炎反应,结果显示出上皮细胞的变化。
引用本文(点击最下方阅读原文可下载PDF)
Kaya B, Yesil-Celiktas O, 2024. Ionic liquid-based transparent membrane-coupled human lung epithelium-on-a-chip demonstrating PM0.5 pollution effect under breathing mechanostress. Bio-des Manuf 7(5):624–636. https://doi.org/10.1007/s42242-024-00289-z
文章导读
图1 图片摘要
图2 离子液体基聚(羟乙基)甲基丙烯酸酯膜的合成及表征
图3 肺上皮的形成
图4 PM0.5对肺上皮芯片的影响
参考文献
上下滑动以阅览
1. Fontoura JC, Viezzer C, dos Santos FG et al (2020) Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C 107:110264. https://doi.org/10.1016/j.msec.2019.110264
2. Saygili E, Devamoglu U, Goker-Bagca B et al (2022) A drug-responsive multicellular human spheroid model to recapitulate drug-induced pulmonary fibrosis. Biomed Mater 17(4):045021. https://doi.org/10.1088/1748-605X/ac73cd
3. Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A et al (2024) Precision cut lung slices as a preclinical model to study host-influenza A infection. Tissue Cell 87:102319. https://doi.org/10.1016/j.tice.2024.102319
4. Butler KS, Brinker CJ, Leong HS (2022) Bridging the in vitro to in vivo gap: using the chick embryo model to accelerate nanoparticle validation and qualification for in vivo studies. ACS Nano 16(12):19626–19650. https://doi.org/10.1021/acsnano.2c03990
5. Hou W, Hu SY, Yong K et al (2020) Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model. Bio-Des Manuf 3(4):383–395. https://doi.org/10.1007/s42242-020-00092-6
6. Saygili E, Yildiz-Ozturk E, Green MJ et al (2021) Human lung-on-chips: advanced systems for respiratory virus models and assessment of immune response. Biomicrofluidics 15(2):021501. https://doi.org/10.1063/5.0038924
7. Cooper DM, Loxham M (2019) Particulate matter and the airway epithelium: the special case of the underground? Eur Respir Rev 28(153):190066. https://doi.org/10.1183/16000617.0066-2019
8. Amato-Lourenço LF, Carvalho-Oliveira R, Júnior GR et al (2021) Presence of airborne microplastics in human lung tissue. J Hazard Mater 416:126124. https://doi.org/10.1016/j.jhazmat.2021.126124
9. Zhang L, Wang CS, Xian M et al (2020) Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy Asthma Immunol Res 12(1):56–71. https://doi.org/10.4168/aair.2020.12.1.56
10. Lin LN, Wang XC, Niu MY et al (2022) Biomimetic epithelium/endothelium on chips. Eng Regen 3(2):201–216. https://doi.org/10.1016/j.engreg.2022.05.001
11. Zhang M, Wang P, Luo RH et al (2021) Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv Sci 8(3):2002928. https://doi.org/10.1002/advs.202002928
12. Fernandez-Carro E, Salomon-Cambero R, Armero L et al (2023) Nanoparticles Stokes radius assessment through permeability coefficient determination within a new stratified epithelium on-chip model. Artif Cell Nanomed B 51(1):466–475. https://doi.org/10.1080/21691401.2023.2253534
13. Melo-Fonseca F, Carvalho O, Gasik M et al (2023) Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Bio-Des Manuf 6(3):340–371. https://doi.org/10.1007/s42242-023-00232-8
14. Stucki AO, Stucki JD, Hall SRR et al (2015) A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15(5):1302–1310. https://doi.org/10.1039/c4lc01252f
15. Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. https://doi.org/10.1126/science.1188302
16. Benam KH, Villenave R, Lucchesi C et al (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13:151–157. https://doi.org/10.1038/nmeth.3697
17. Niu MY, Zhu YJ, Ding XY et al (2023) Biomimetic alveoli system with vivid mechanical response and cell–cell interface. Adv Healthc Mater 12(26):e2300850. https://doi.org/10.1002/adhm.202300850
18. Baptista D, Moreira Teixeira L, Barata D et al (2022) 3D lung-on-chip model based on biomimetically microcurved culture membranes. ACS Biomater Sci Eng 8(6):2684–2699. https://doi.org/10.1021/acsbiomaterials.1c01463
19. Saygili E, Devamoglu U, Bayir E et al (2023) An optical pH-sensor integrated microfluidic platform multilayered with bacterial cellulose and gelatin methacrylate to mimic drug-induced lung injury. J Ind Eng Chem 121:190–199. https://doi.org/10.1016/j.jiec.2023.01.023
20. Zamprogno P, Wüthrich S, Achenbach S et al (2021) Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun Biol 4(1):168. https://doi.org/10.1038/s42003-021-01695-0
21. Hong Y, Lin ZN, Luo ZR et al (2022) Development of conductive hydrogels: from design mechanisms to frontier applications. Bio-Des Manuf 5(4):725–756. https://doi.org/10.1007/s42242-022-00208-0
22. Jing YF, Wang AH, Li JL et al (2022) Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des Manuf 5(1):153–162. https://doi.org/10.1007/s42242-021-00143-6
23. Liu YW, Wang P, Wang J et al (2020) Transparent and tough poly(2-hydroxyethyl methacrylate) hydrogels prepared in water/IL mixtures. New J Chem 44:4092–4098. https://doi.org/10.1039/d0nj00214c
24. Roan E, Waters CM (2011) What do we know about mechanical strain in lung alveoli? Am J Physiol Lung Cell Mol Physiol 301(5):L625–L635. https://doi.org/10.1152/ajplung.00105.2011
25. Tan JF, Sun XD, Zhang JH et al (2022) Exploratory evaluation of EGFR-targeted anti-tumor drugs for lung cancer based on lung-on-a-chip. Biosensors 12(8):618. https://doi.org/10.3390/bios12080618
26. Zhu YJ, Sun LY, Wang Y et al (2022) A biomimetic human lung-on-a-chip with colorful display of microphysiological breath. Adv Mater 34(13):2108972. https://doi.org/10.1002/adma.202108972
27. Kadyrova A, Kanabekova P, Martin A et al (2022) Evaluation of membranes for mimicry of an alveolar-capillary barrier in microfluidic lung-on-a-chip devices. Mater Today Proc 71:7–12. https://doi.org/10.1016/j.matpr.2022.05.582
28. Echeverria Molina MI, Malollari KG, Komvopoulos K (2021) Design challenges in polymeric scaffolds for tissue engineering. Front Bioeng Biotechnol 9:617141. https://doi.org/10.3389/fbioe.2021.617141
29. Walter FR, Valkai S, Kincses A et al (2016) A versatile lab-on-a-chip tool for modeling biological barriers. Sensor Actuat B-Chem 222:1209–1219. https://doi.org/10.1016/j.snb.2015.07.110
30. Shrestha J, Ghadiri M, Shanmugavel M et al (2019) A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip 1:100001. https://doi.org/10.1016/j.ooc.2020.100001
31. Agmon G, Christman KL (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 20(4):193–201. https://doi.org/10.1016/j.cossms.2016.02.001
32. Saglam-Metiner P, Devamoglu U, Filiz Y et al (2023) Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol 6(1):173. https://doi.org/10.1038/s42003-023-04547-1
33. Mousavi SJ, Hamdy Doweidar M (2015) Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model. PLoS ONE 10(5):e0124529. https://doi.org/10.1371/journal.pone.0124529
34. Fuard D, Tzvetkova-Chevolleau T, Decossas S et al (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85(5–6):1289–1293. https://doi.org/10.1016/j.mee.2008.02.004
35. Peng J, Grayson M, Snyder GJ (2021) What makes a material bendable? A thickness-dependent metric for bendability, malleability, ductility. Matter 4(9):2694–2696. https://doi.org/10.1016/j.matt.2021.07.015
36. Da Paula AC, Ramalho AS, Farinha CM et al (2005) Characterization of novel airway submucosal gland cell models for cystic fibrosis studies. Cell Physiol Biochem 15(6):251–262. https://doi.org/10.1159/000087235
37. Dubin RF, Robinson SK, Widdicombe JH (2004) Secretion of lactoferrin and lysozyme by cultures of human airway epithelium. Am J Physiol Lung Cell Mol Physiol 286(4):L750–L755. https://doi.org/10.1152/ajplung.00326.2003
38. Zhu Y, Chidekel A, Shaffer TH (2010) Cultured human airway epithelial cells (Calu-3): a model of human respiratory function, structure, and inflammatory responses. Crit Care Res Pract 2010:1–8. https://doi.org/10.1155/2010/394578
39. Florea BI, Meaney C, Junginger HE et al (2002) Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 4(3):12. https://doi.org/10.1208/ps040312
40. Grainger CI, Greenwell LL, Lockley DJ et al (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23(7):1482–1490. https://doi.org/10.1007/s11095-006-0255-0
41. Akamatsu Y, Akagi T, Sumitomo T et al (2023) Construction of human three-dimensional lung model using layer-by-layer method. Tissue Eng Part C Methods 29(3):95–102. https://doi.org/10.1089/ten.tec.2022.0184
42. Ingber DE (2018) From mechanobiology to developmentally inspired engineering. Philos Trans R Soc B Biol Sci 373(1759):20170323. https://doi.org/10.1098/rstb.2017.0323
43. Waters CM, Roan E, Navajas D (2012) Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2(1):1–29. https://doi.org/10.1002/cphy.c100090
44. Dudek SM, Garcia JGN (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91(4):1487–1500. https://doi.org/10.1152/jappl.2001.91.4.1487
45. Hnizdo E, Vallyathan V (2003) Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occup Environ Med 60(4):237–243. https://doi.org/10.1136/oem.60.4.237
46. Rumchev K, Hoang DV, Lee A (2022) Case report: exposure to respirable crystalline silica and respiratory health among Australian mine workers. Front Public Health 10:798472. https://doi.org/10.3389/fpubh.2022.798472
47. Buchanan D, Miller BG, Soutar CA (2003) Quantitative relations between exposure to respirable quartz and risk of silicosis. Occup Environ Med 60(3):159–164. https://doi.org/10.1136/oem.60.3.159
48. Rojewska M, Tim B, Prochaska K (2022) Interactions between silica particles and model phospholipid monolayers. J Mol Liq 345:116999. https://doi.org/10.1016/j.molliq.2021.116999
49. Donkers JM, Höppener EM, Grigoriev I et al (2022) Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles. Microplast Nanoplast 2:6. https://doi.org/10.1186/s43591-021-00024-w
50. Schmitz C, Welck J, Tavernaro I et al (2019) Mechanical strain mimicking breathing amplifies alterations in gene expression induced by SiO2 NPs in lung epithelial cells. Nanotoxicology 13(9):1227–1243. https://doi.org/10.1080/17435390.2019.1650971
51. Cakmak B, Saglam-Metiner P, Beceren G et al (2022) A 3D in vitro co-culture model for evaluating biomaterial-mediated modulation of foreign-body responses. Bio-Des Manuf 5(3):465–480. https://doi.org/10.1007/s42242-022-00198-z
52. Lai WY, Wang JW, Huang BT et al (2019) A novel TNF-α-targeting aptamer for TNF-α-mediated acute lung injury and acute liver failure. Theranostics 9(6):1741–1751. https://doi.org/10.7150/thno.30972
53. Aghapour M, Raee P, Moghaddam SJ et al (2018) Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol 58(2):157–169. https://doi.org/10.1165/rcmb.2017-0200TR
54. Malaviya R, Laskin JD, Laskin DL (2017) Anti-TNFα therapy in inflammatory lung diseases. Pharmacol Ther 180:90–98. https://doi.org/10.1016/j.pharmthera.2017.06.008
55. Raftis JB, Miller MR (2019) Nanoparticle translocation and multi-organ toxicity: a particularly small problem. Nano Today 26:8–12. https://doi.org/10.1016/j.nantod.2019.03.010
56. Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163(5):1176–1180. https://doi.org/10.1164/ajrccm.163.5.2006053
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码