四川盆地有着大量的热矿水资源,且热矿水中的锂含量差异显著,最高达118.0 mg/L,成因机制尚不清楚。为解决这一问题,西南交通大学宜宾研究院张云辉团队结合前人研究成果,应用水文地球化学、数理统计、空间插值等方法,揭示四川盆地热矿水的分布特征、锂含量的分布特征以及热矿水中锂的来源机理。相关成果在《Geothermics》上发表。
锂,作为最轻的固体元素,具有极大的经济效益和重要的战略意义。随着电动交通工具的全球盛行,锂的需求在不断增长,锂资源面临的压力愈发剧烈。前人研究证实,地热活动对富锂热矿水的形成至关重要。四川盆地热矿水资源丰富(图1),部分热矿水中锂异常富集,成因机制有待探明。本研究收集了四川盆地共135组热矿水样品(82组温泉水样品和53组地热井水样品),揭示四川盆地热矿水的分布特征,分析热矿水中锂元素的分布特征,探究热储温度与锂元素的富集关系,构建四川盆地含(富)锂热矿水的形成机制,为四川盆地地热资源的综合开发利用提供理论基础和科学依据。
图1 Geothermal water distribution and
geological structure map. (a) Map of China; (b) Geological structure map and
distribution of thermal mineral waters in Sichuan Basin, including thermal
springs and thermal wells in the study area. The tectonic and stratigraphic
information refer from Li et al. (2023).研究结果表明:含锂(Li>1 mg/L)热矿水主要分布在四川盆地西南部第四纪沉积地层的边界带(图2),热储温度变化范围为40
~ 150℃(图3),锂含量与K-Mg和Mg-Li地热温度计计算的热储温度呈正相关(图4)。贫锂热矿水的水-岩作用主要为碳酸盐矿物(方解石和白云石)和硫酸盐矿物(石膏或硬石膏)的溶解(图5),水化学类型主要为SO4-Ca(53 %)、SO4-Ca-Mg (23.1 %)和Cl-Na(13.7 %)(图6)。
四川盆地含锂热矿水的锂来源可以归结为:首先,三叠纪时期古海水的蒸发浓缩和深变质作用对锂的浓缩;其次,深部热矿水与峨眉山玄武岩或绿豆岩的水-岩反应对锂的溶解和过滤作用;第三,构造活动活跃(如深大断裂活动)诱发深部的锂随流体上升。为此,将四川盆地自北西向南东划分为四个不同区段:龙门山山前断裂带、龙门山山前断裂带-龙泉山断裂、龙泉山断裂-华蓥山断裂、华蓥山断裂东段,并初步阐述了四川盆地热矿水的形成过程和锂富集的不同机制(图7和图8)。
周公山新井的锂含量高达118.0 mg/L,具有极大的开发潜力,其成因如图9所示:富含Cl、Na、B和Li的深埋古海水沿着断层(F1和F2)上升,与渗入断层的大气降水混合,然后沿着岩溶裂缝和层间裂隙通道迁移至向斜北侧,在倾斜构造内形成承压水。此循环过程中,Na、K、Ca和Li元素从碳酸盐岩(白云岩、石灰岩)和含锂岩(峨眉山玄武岩、绿豆岩)中浸出,经过浓缩和富集过程后,TDS值和Li含量分别增加到20.6 g/L和118.0 mg/L。
图2 Map of the distribution of thermal mineral waters
with different Li concentrations in the Sichuan Basin. Thermal reservoir
information refers to Wang
(2018) and Cui (2021).图3 The spatial distribution
characteristics of geothermal reservoir temperatures calculated by quartz
geothermometer in the study area. The interpolation is conducted using inverse
distance weights method (Daly, 2006) in
Arcgis 10.8 software.图4 The correlation between geothermal reservoir
temperatures and Li contents in Li-bearing
thermal mineral waters of the study area. The geothermal reservoir temperatures are calculated by K–Mg geothermometer (a) and
Mg–Li geothermometer (b).图5 The correlation of ions (a) Na vs. Cl;
(b) Ca + Mg vs. HCO3; (c) Ca vs. SO4; (d) Ca + Mg vs. HCO3+SO4; (e) Na + K − Cl vs. Ca + Mg − (HCO3 + SO4); (f) Ca/Na vs.
Mg/Na.图6 The different hydrochemical types of thermal mineral
water in Sichuan Basin. C1 represents Li-poor thermal mineral water; C2
represents Li-bearingthermal mineral water.图7 The correlation of Li ions (a) K vs. Li; (b) B vs.
Li; (c) Na vs. Li; (d) Cl vs. Li. The K and B show a strong positive
relationship with Li (R2 are 0.97 and 0.84, respectively); the Na
shows a positive relationship with Li (R2 is 0.77); and Cl shows
some positive relationship with Li (R2 is 0.57).
图8 Concept diagram of Li thermal mineral water formation
in the Sichuan Basin. The location of the A-A’ section is shown in Fig. 1. BLFZ: The fault zone behind Longmenshan;
FLFZ: The fault zone front Longmenshan; WSFB: Western Sichuan foreland basin;
Central Sichuan uplift area. Fault data from (Li et al., 2023).图9 The genesis mechanism of thermal
mineral water in Zhougongshan (modified from Liu et
al. (2021)). 文章出版信息: Lv Guosen, Zhang Yunhui, Liu Jiawei, Yang Mingfeng, Wang, Si.
Geochemical Characteristics, Li Source and Genesis Mechanism of Thermal Mineral
Water in Sichuan Basin, SW China. Geothermics. 122: 103079 (2024). https://doi.org/10.1016/j.geothermics.2024.103079
欢迎投稿,投稿到地学之家的稿件不影响在其他任何平台的再次发布,已经在网上或其他公众号发布的也可投稿。投稿请点击"投稿指南"