点击下方卡片,关注“OpenCV与AI深度学习”
视觉/图像重磅干货,第一时间送达!
导 读
本文主要介绍使用YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)。
实现步骤
监控摄像头可以有效地用于各种场景下的车辆计数和交通流量统计。先进的计算机视觉技术(例如对象检测和跟踪)可应用于监控录像,以识别和跟踪车辆在摄像机视野中移动。
pip install ultralytics
import math
class CustomTracker:
def __init__(self):
# Store the center positions of the objects
self.custom_center_points = {}
# Keep the count of the IDs
# each time a new object id detected, the count will increase by one
self.custom_id_count = 0
def custom_update(self, custom_objects_rect):
# Objects boxes and ids
custom_objects_bbs_ids = []
# Get center point of new object
for custom_rect in custom_objects_rect:
x, y, w, h = custom_rect
cx = (x + x + w) // 2
cy = (y + y + h) // 2
# Find out if that object was detected already
same_object_detected = False
for custom_id, pt in self.custom_center_points.items():
dist = math.hypot(cx - pt[0], cy - pt[1])
if dist < 35:
self.custom_center_points[custom_id] = (cx, cy)
custom_objects_bbs_ids.append([x, y, w, h, custom_id])
same_object_detected = True
break
# New object is detected we assign the ID to that object
if same_object_detected is False:
self.custom_center_points[self.custom_id_count] = (cx, cy)
custom_objects_bbs_ids.append([x, y, w, h, self.custom_id_count])
self.custom_id_count += 1
# Clean the dictionary by center points to remove IDS not used anymore
new_custom_center_points = {}
for custom_obj_bb_id in custom_objects_bbs_ids:
_, _, _, _, custom_object_id = custom_obj_bb_id
center = self.custom_center_points[custom_object_id]
new_custom_center_points[custom_object_id] = center
# Update dictionary with IDs not used removed
self.custom_center_points = new_custom_center_points.copy()
return custom_objects_bbs_ids
# Import the Libraries
import cv2
import pandas as pd
from ultralytics import YOLO
from tracker import *
model=YOLO('yolov9c.pt')
class_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',
'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',
'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
tracker=CustomTracker()
count=0
cap = cv2.VideoCapture('traffictrim.mp4')
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter object to save the modified frames
output_video_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can use other codecs like 'XVID' based on your system
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
# Looping over each frame and Performing the Detection
down = {}
counter_down = set()
while True:
ret, frame = cap.read()
if not ret:
break
count += 1
results = model.predict(frame)
a = results[0].boxes.data
a = a.detach().cpu().numpy()
px = pd.DataFrame(a).astype("float")
# print(px)
list = []
for index, row in px.iterrows():
# print(row)
x1 = int(row[0])
y1 = int(row[1])
x2 = int(row[2])
y2 = int(row[3])
d = int(row[5])
c = class_list[d]
if 'car' in c:
list.append([x1, y1, x2, y2])
bbox_id = tracker.custom_update(list)
# print(bbox_id)
for bbox in bbox_id:
x3, y3, x4, y4, id = bbox
cx = int(x3 + x4) // 2
cy = int(y3 + y4) // 2
# cv2.circle(frame,(cx,cy),4,(0,0,255),-1) #draw ceter points of bounding box
# cv2.rectangle(frame, (x3, y3), (x4, y4), (0, 255, 0), 2) # Draw bounding box
# cv2.putText(frame,str(id),(cx,cy),cv2.FONT_HERSHEY_COMPLEX,0.8,(0,255,255),2)
y = 308
offset = 7
''' condition for red line '''
if y < (cy + offset) and y > (cy - offset):
''' this if condition is putting the id and the circle on the object when the center of the object touched the red line.'''
down[id] = cy # cy is current position. saving the ids of the cars which are touching the red line first.
# This will tell us the travelling direction of the car.
if id in down:
cv2.circle(frame, (cx, cy), 4, (0, 0, 255), -1)
#cv2.putText(frame, str(id), (cx, cy), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0, 255, 255), 2)
counter_down.add(id)
# # line
text_color = (255, 255, 255) # white color for text
red_color = (0, 0, 255) # (B, G, R)
# print(down)
cv2.line(frame, (282, 308), (1004, 308), red_color, 3) # starting cordinates and end of line cordinates
cv2.putText(frame, ('red line'), (280, 308), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)
downwards = (len(counter_down))
cv2.putText(frame, ('Vehicle Counter - ') + str(downwards), (60, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, red_color, 1,
cv2.LINE_AA)
cv2.line(frame,(282,308),(1004,308),red_color,3) # starting cordinates and end of line cordinates
cv2.putText(frame,('red line'),(280,308),cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)
# This will write the Output Video to the location specified above
out.write(frame)
在上面的代码中,我们循环遍历视频中的每个帧,然后进行检测。然后,由于我们仅对车辆进行计数,因此仅过滤掉汽车的检测结果。
之后,我们找到检测到的车辆的中心,然后在它们穿过人工创建的红线时对它们进行计数。我们可以在下面的视频快照中清楚地看到它们。
—THE END—
下载1:Pytorch常用函数手册
欢迎加入CV学习交流微信群!