数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充

科技   科技   2024-10-08 16:55   浙江  

全文链接:https://tecdat.cn/?p=33055


员工满意度对于组织绩效和竞争力具有重要影响,因此准确了解员工满意度的影响因素和有效管理成为管理者的关键任务。而员工满意度调查是常用的研究方法之一,通过收集员工的反馈数据来了解他们的期望、需求和感受点击文末“阅读原文”获取完整代码数据

相关视频



本文的目标是探讨使用R语言中的缺失值填充、lasso回归和贝叶斯分析方法来应对员工满意度调查数据中的缺失值。具体而言,我们将通过应用这些方法来处理一份实际的员工满意度调查数据查看文末了解数据免费获取方式,并比较它们在填充结果方面的差异和效果。此外,我们还将尝试使用lasso回归来选择和建立员工满意度的影响因素模型,并利用贝叶斯分析方法对模型进行修正和推断。

数据变量:

读取数据

dat <- read.spss("Non-Wser coutris eclUNJan .sav", to.data.

head(dat)

对缺失值进行填补

分别采用三种方法对空值进行处理:

(1)删除法

dat1=na.omit(dat)  
head(dat1)

(2)平均值补缺

dat2[index,i]=mean(na.omit(dat[,i]))

(3)多重补插法进行补缺。

# completeddat <- complete(tempdat,1)

变量筛选

xmat <-  model.matrix(  E2~ Organisation+Year+Population+Sector+V1+V10+

建立lasso模型

cv.aso <- cvglnet(xmat,   (at2.tain$E21:nrw(xmat)] )nfolds = 1

绘制误差

plot(cv.lasso)


点击标题查阅往期内容


群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化


左右滑动查看更多


01

02

03

04



coef(cv.lasso,s="lambda.1se")


根据lasso筛选出重要的变量

variables

贝叶斯bayes模型

Bayes(as.factor(E2) ~ ., data = dat2.train)

预测数据

head(prdct(del,datada.tain )$las)


数据获取


在公众号后台回复“员工”,可免费获取完整数据。




本文中分析的数据和代码分享到会员群,扫描下面二维码即可加群!



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充》。


点击标题查阅往期内容

R语言Lasso回归模型变量选择和糖尿病发展预测模型
【视频】Lasso回归、岭回归正则化回归数学原理及R软件实例
群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化
【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例
R语言Lasso回归模型变量选择和糖尿病发展预测模型
用LASSO,adaptive LASSO预测通货膨胀时间序列
MATLAB用Lasso回归拟合高维数据和交叉验证
群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化
高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据
Python高维变量选择:SCAD平滑剪切绝对偏差惩罚、Lasso惩罚函数比较
R使用LASSO回归预测股票收益
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
Python中的Lasso回归之最小角算法LARS
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言实现LASSO回归——自己编写LASSO回归算法
r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
R使用LASSO回归预测股票收益
R语言如何和何时使用glmnet岭回归
R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列
Python用ARIMA和SARIMA模型预测销量时间序列数据




拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章