全文链接:http://tecdat.cn/?p=16845
本文依靠EVT对任何连续分布的尾部建模。尾部建模,尤其是POT建模,对于许多金融和环境应用至关重要(点击文末“阅读原文”获取完整代码数据)。
相关视频
POT模型其主要动机是为高洪水流量的概率模型提供实用工具。但是,EVT的优势在于结果不取决于要建模的过程。因此,人们可以使用POT来分析降水,洪水,金融时间序列,地震等。
特征
POT软件包可以执行单变量和双变量极值分析;一阶马尔可夫链也可以考虑。例如,目前使用18个 估算器拟合(单变量)GPD 。这些估算器依靠三种不同的技术:
极大似然:MLE,LME,MPLE
动量法:MOM,PWM,MED
距离最小化:MDPD和MGF估计器。
与单变量情况相反,没有用于对超过阈值的双变量超出进行建模的有限参数化。POT允许对双变量GPD进行6种参数化:对数模型,负对数模型和混合模型-以及它们各自的不对称版本。
最后,可以使用二元GPD拟合一阶马尔可夫链,以实现两个连续观测值的联合分布。
在本节中,我们明确介绍了软件包中一些最有用的功能。但是,对于完整的描述,用户可能希望查看软件包的小插图和软件包的html帮助。
GPD 计算:
模拟来自GPD(0,1,0.2)的样本:
x <- rgpd(100, 0, 1, 0.2)
##评估x = 3时的密度和不超过的概率:
dgpd(3, 0, 1, 0.2); pgpd(3, 0, 1, 0.2)
#计算非超出概率为0.95的分位数:
qgpd(0.95, 0, 1, 0.2)
y <- rbvgpd(100, mo
##评估不超过(5,14)的可能性
pbvgpd(c(3,15), mode
GPD 拟合
##最大似然估计(阈值= 0):
mle <- fgpd(x, 0)
##最大似然估计(阈值= 0):
pwu <- fgpd(x, 0, "pwmu")
##最大拟合优度估算器:
adr <- fgpd(x, 0, "mgf"
##指定已知参数:
fgpd(x, 0, "mple",
##指定数值优化的起始值:
fgpd(x, 0, "mdpd", start =
##拟合具有逻辑依存关系的双变量GPD:
log <- fitbv
绘图用于单变量和双变量情况的通用函数:
plot(mle); plot(log)
点击标题查阅往期内容
左右滑动查看更多
返回等级图:
概率图和QQ图
qq(mle)
绘制密度
绘制Pickands的依赖函数:
光谱密度图:
对数似然(分位数):
confint(mle, prob = 0.95)
对数似然(参数):
confint(mle, "shape")
本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群!
本文摘选《R语言POT超阈值模型和极值理论EVT分析》,点击“阅读原文”获取全文完整资料。
点击标题查阅往期内容