【直播】2024脑科学与光子学大会(开幕式+大会)

学术   2024-10-19 00:02   安徽  



2024脑科学与光子学大会

2024年10月20日 9:00


由中国光学工程学会联合国际电气与电子工程师学会光子学协会、澳大利亚高科技产业促进会主办的“2024脑科学与光子学大会”于2024年10月19日至21日在太仓举办,将结合最新光电应用技术,搭建横向交流平台。作为“生命科学与光子学”系列活动之一,会议邀请国际国内院士专家、科研院所、医疗机构等参会,汇聚国内外的创新科技成果及人才项目团队。

【会议亮点】
1、国际高端创新人才齐聚一堂——国际国内院士专家千余人共同参会交流,分享全球脑科学与健康最新的技术和成果,促进国内外产业交流合作。
2、生命科学与光学工程交叉融合——以脑科学重大疾病为需求牵引,结合最新光电技术和仪器在科学研究、诊断与分析、检查和治疗等各方面探讨横向合作,直面挑战,形成高效创新的合作新模式。
3、促进成果转化落地——聚集国际科研创新团队、高端临床医学机构、行业龙头企业、产业资本和基金、行业知名组织平台等,为国内相关产业聚集地提供最新、最直接的成果转化“快车道”,推动地方产业园区创新升级。

蔻享学术
扫码观看直播


报告人介绍






程和平

程和平,北京大学未来技术学院,北京大学国家生物医学成像科学中心迄今发表论文200余篇,其中十多篇刊于 Science、Nature 和 Cell,总引用数23,000余次。长期致力于钙信号、线粒体生物医学领域的研究,以及高端生物医学仪器的自主创制。



报告摘要


报告题目:多光子成像前沿技术与脑科学应用探索
摘要:脑科学研究涵盖“读、释、写、仿”四个方面,是一门新兴的前沿学科。自2017年以来,我们团队在多光子成像技术领域取得了显著进展。2017年,我们成功研发了2.2克的微型化双光子显微镜,实现了自由行为小鼠脑神经元活动的观察,为脑科学研究开辟了新范式。2021年推出的第二代微型化双光子显微镜,扩大了成像视野,并能够在三维空间中成像近千个神经元,进一步推动了大脑神经元结构与功能的研究。2023年,我们又研发了2.17克的微型化三光子显微镜,首次实现了对自由行为小鼠的大脑全皮层和海马神经元的功能成像,为深层神经机制的探索提供了新工具。为了支撑中国的“脑计划”,我们建立了“南京脑观象台”, 助力中国科学家开展了涉及皮质工作记忆、睡眠、自闭症、抑郁症、神经药理学和神经元再生等的“探索计划”项目,在脑科学领域取得一批突破性成果。


iLihong V. Wang

Lihong Wang is Bren Professor of Medical and Electrical Engineering at California Institute of Technology. His book entitled “Biomedical Optics” won the Goodman Book Writing Award. He has published 600 peer-reviewed journal articles and delivered 610 keynote/plenary/invited talks. His Google Scholar h-index and citations have reached 160 and 110K. His laboratory was the first to report functional photoacoustic tomography, 3D photoacoustic microscopy, and CUP (world’s fastest camera). He received the NIH Director’s Pioneer, NIH Director’s Transformative Research, and NIH/NCI Outstanding Investigator awards. He also received the OSA C.E.K. Mees Medal, IEEE Technical Achievement Award, IEEE Biomedical Engineering Award, SPIE Britton Chance Biomedical Optics Award, IPPA Senior Prize, and OSA Michael S. Feld Biophotonics Award. He is a Fellow of AAAS, AIMBE, Electromagnetics Academy, IAMBE, IEEE, NAI, OSA, and SPIE. An honorary doctorate was conferred on him by Lund University, Sweden. He was inducted into the National Academy of Engineering.



报告摘要


报告题目:光声、光速、和量子成像
摘要:我们开发了用于深层组织成像的光声断层扫描 (PAT),可提供从细胞器到整个生物体的体内功能、代谢、分子和组织学成像。此外,我们还开发了光速压缩超快摄影 (CUP),能够以每秒219万亿帧的速度进行记录。CUP可以捕捉最快的现象,例如光传播,也可以放慢速度来记录神经传导等事件。此外,我们的研究还扩展到用于成像的量子纠缠。PAT结合了光和超声波,克服了光学扩散极限(~1 毫米),具有厘米级深度穿透、高超声分辨率和光学对比度。应用包括早期癌症检测和脑成像。作为SPIE西部光子学的一部分,一年一度的PAT会议自2010年以来一直是一项重要活动。CUP只需一次曝光,即可捕捉飞秒级的瞬态事件。与其他需要主动照明的超快成像仪不同,CUP仅用于接收,可与从显微镜到望远镜的各种前置光学器件配对,促进包括生物学和宇宙物理学在内的基础科学和应用科学的多种应用。量子成像利用海森堡缩放比例,随着量子数量线性提高空间分辨率,优于标准量子缩放比例的平方根改进。


Michael Hausser

Michael Häusser earned his PhD from Oxford University under the supervision of Julian Jack. He subsequently worked with Nobel Laureate Bert Sakmann at the Max-Planck-Institute for Medical Research in Heidelberg and with Philippe Ascher at the Ecole Normale Superieure in Paris. He established his lab at UCL in 1997 and became Professor of Neuroscience in 2001. He helped to found the International Brain Laboratory, a global open-science collaboration which aims to understand how the brain makes decisions. His group uses a combination of two-photon imaging, two-photon optogenetics and Neuropixels recordings during behaviour in order to understand the cellular and circuit basis of neural computations in the mammalian brain, with a strong focus on dendritic computation.



报告摘要


报告题目:llluminating Links between Neural Circuit Activity and Behavior
摘要:Understanding the causal relationship between activity patterns in neural circuits and behavior is one of the fundamental questions in systems neuroscience. Addressing this problem requires the ability to perform rapid and targeted interventions in ongoing neuronal activity at cellular resolution and with millisecond precision. I will describe results of experiments using a powerful new "all-optical" strategy for interrogating neural circuits which combines simultaneous two-photon imaging and two-photon optogenetics. This enables the activity of functionally characterized and genetically defined ensembles of neurons to be manipulated with sufficient temporal and spatial resolution to enable physiological patterns of network activity to be reproduced. We have used this approach to identify the lower bound for perception of cortical activity, probe how brain state influences the role of cortex in perception, and provide causal tests of the role of hippocampal place cells in spatial navigation.


黄旭枫

Huang Xufeng: Distinguished Professor at the University of Wollongong, Australia, Senior Research Fellow of the National Health and Medical Research Council, and PhD supervisor. He holds a Bachelor of Medicine from Xuzhou Medical University and dual PhDs in Medicine and Psychology from the University of New South Wales, Australia. In 2006, he was appointed as a professor in Australia, promoted to Senior Professor in 2014, and Distinguished Professor in 2018. From 2011 to 2016, he served as Deputy Director of the Illawarra Health and Medical Research Institute in Australia. Since 1999, he has been the Director of the Centre for Translational Neuroscience and Head of the Metabolic Basic Sciences Division. He has published eight books, 322 papers in SCI-indexed international journals, with 20,059 citations and an H-index of 75 (Google Scholar). He has served on expert panels, including the NHMRC and AstraZeneca External Advisory Board.



报告摘要


报告题目:脑神经联系缺陷与严重性脑病
摘要:神经突完整性对大脑健康功能至关重要,因为它维持轴突和树突,从而确保正常的神经通信。神经突损伤是阿尔茨海默病和帕金森病等神经退行性疾病的常见特征,导致认知衰退和运动功能障碍。精神疾病如精神分裂症也表现出神经突结构的改变,一些抗精神病药物的治疗可能会导致神经突的丧失。此外,炎症和代谢疾病(如肥胖)也会损害神经突的完整性,凸显了保护神经突健康以预防脑疾病进展的治疗方法的重要性。


高会军

高会军,哈尔滨工业大学航天学院教授、博士生导师,智能控制与系统研究所所长;欧洲科学院院士、长江学者特聘教授、国家杰出青年基金获得者、IEEE Fellow、香港大学荣誉教授;曾任全国青联常委、黑龙江省青联副主席。研究方向为显微操作、智能控制、类器官制造等。获国家自然科学二等奖、全国先进工作者、中国青年五四奖章、中国青年科技奖、陈嘉庚青年科学奖、科学探索奖等荣誉。任IEEE工业电子学会副主席、IEEE机电一体化汇刊主编,获IEEE诺伯特·维纳奖、IEEE尤金·米特尔曼成就奖。培养的多名学生入选国家高层次人才计划。



报告摘要


报告题目:基于显微操控的类器官再生智能系统
摘要:类器官是在体外培育的、保有组织器官结构与功能的细胞团,在生物医学领域具有广泛应用,是国际前沿热点方向。本报告介绍面向类器官再生的显微操控智能系统及方法。针对类器官再生机理复杂、状态感知维度低、细胞操控精度不足等难点问题,基于显微操作与智能控制相关技术,研究类器官再生模型构建、类器官细胞显微操作、类器官生长过程智能控制等理论与方法,建立面向类器官再生的显微操控智能系统,推动类器官在病理研究、药物研发、个体化诊疗等生物医药领域的重要应用。



声明:此文是出于传递更多信息之目的。部分图片、资料来源于网络,版权归原作者所有,如有侵权请联系后台删除。

往期推荐:





科学家精神进校园 | 中国科大杨睿智教授:寻找暗物质


A New Framework for Quantum Phases in Open…


清华戚益军教授:RNA Regulation in Plants


清华高飞副教授:A Measurement of Solar B-8 Neutrino Fog and…


德国弗里茨·哈伯研究所Matthias Scheffler教授:人工智能在材料科学应用中的机遇与挑战


点击“阅读原文

蔻享学术
传播科学、共享科学、服务科学
 最新文章