前言
原文翻译自:Deep Learning with PyTorch: A 60 Minute Blitz
翻译:林不清(https://www.zhihu.com/people/lu-guo-92-42-88)
目录
训练一个分类器
你已经学会如何去定义一个神经网络,计算损失值和更新网络的权重。
你现在可能在思考:数据哪里来呢?
关于数据
通常,当你处理图像,文本,音频和视频数据时,你可以使用标准的Python包来加载数据到一个numpy数组中.然后把这个数组转换成torch.*Tensor
。
对于图像,有诸如Pillow,OpenCV包等非常实用 对于音频,有诸如scipy和librosa包 对于文本,可以用原始Python和Cython来加载,或者使用NLTK和SpaCy 对于视觉,我们创建了一个 torchvision
包,包含常见数据集的数据加载,比如Imagenet,CIFAR10,MNIST等,和图像转换器,也就是torchvision.datasets
和torch.utils.data.DataLoader
。
这提供了巨大的便利,也避免了代码的重复。
在这个教程中,我们使用CIFAR10数据集,它有如下10个类别:’airplane’,’automobile’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’,’ship’,’truck’。这个数据集中的图像大小为3*32*32,即,3通道,32*32像素。
训练一个图像分类器
我们将按照下列顺序进行:
使用 torchvision
加载和归一化CIFAR10训练集和测试集.定义一个卷积神经网络 定义损失函数 在训练集上训练网络 在测试集上测试网络
1. 加载和归一化CIFAR10
使用torchvision
加载CIFAR10是非常容易的。
%matplotlib inline
import torch
import torchvision
import torchvision.transforms as transforms
torchvision的输出是[0,1]的PILImage图像,我们把它转换为归一化范围为[-1, 1]的张量。
注意
如果在Windows上运行时出现BrokenPipeError,尝试将torch.utils.data.DataLoader()的num_worker设置为0。
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#这个过程有点慢,会下载大约340mb图片数据。
我们展示一些有趣的训练图像。
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
2. 定义一个卷积神经网络
从之前的神经网络一节复制神经网络代码,并修改为接受3通道图像取代之前的接受单通道图像。
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
3. 定义损失函数和优化器
我们使用交叉熵作为损失函数,使用带动量的随机梯度下降。
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
4. 训练网络
这是开始有趣的时刻,我们只需在数据迭代器上循环,把数据输入给网络,并优化。
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
保存一下我们的训练模型
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
点击这里查看关于保存模型的详细介绍
5. 在测试集上测试网络
我们在整个训练集上训练了两次网络,但是我们还需要检查网络是否从数据集中学习到东西。
我们通过预测神经网络输出的类别标签并根据实际情况进行检测,如果预测正确,我们把该样本添加到正确预测列表。
第一步,显示测试集中的图片一遍熟悉图片内容。
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
接下来,让我们重新加载我们保存的模型(注意:保存和重新加载模型在这里不是必要的,我们只是为了说明如何这样做):
net = Net()
net.load_state_dict(torch.load(PATH))
现在我们来看看神经网络认为以上图片是什么?
outputs = net(images)
输出是10个标签的概率。一个类别的概率越大,神经网络越认为他是这个类别。所以让我们得到最高概率的标签。
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
这结果看起来非常的好。
接下来让我们看看网络在整个测试集上的结果如何。
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
结果看起来好于偶然,偶然的正确率为10%,似乎网络学习到了一些东西。
那在什么类上预测较好,什么类预测结果不好呢?
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
接下来干什么?
我们如何在GPU上运行神经网络呢?
在GPU上训练
你是如何把一个Tensor转换GPU上,你就如何把一个神经网络移动到GPU上训练。这个操作会递归遍历有所模块,并将其参数和缓冲区转换为CUDA张量。
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assume that we are on a CUDA machine, then this should print a CUDA device:
#假设我们有一台CUDA的机器,这个操作将显示CUDA设备。
print(device)
接下来假设我们有一台CUDA的机器,然后这些方法将递归遍历所有模块并将其参数和缓冲区转换为CUDA张量:
net.to(device)
请记住,你也必须在每一步中把你的输入和目标值转换到GPU上:
inputs, labels = inputs.to(device), labels.to(device)
为什么我们没注意到GPU的速度提升很多?那是因为网络非常的小。
实践:
尝试增加你的网络的宽度(第一个nn.Conv2d
的第2个参数, 第二个nn.Conv2d
的第一个参数,他们需要是相同的数字),看看你得到了什么样的加速。
实现的目标:
深入了解了PyTorch的张量库和神经网络 训练了一个小网络来分类图片
在多GPU上训练
如果你希望使用所有GPU来更大的加快速度,请查看选读:[数据并行]:(https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html)
本文仅做学术分享,如有侵权,请联系删文。