1、激光雷达的工作原理是什么?
发射激光脉冲:激光雷达设备发射一束激光脉冲,这些脉冲通常是红外或近红外光。 光的传播:激光脉冲以光速传播,向目标物体移动。 光的反射:当激光脉冲遇到目标物体时,部分光会被反射回来。 接收反射光:激光雷达设备中的接收器捕捉反射回来的激光。接收器通常与发射器紧密对齐,以确保接收到的光是直接从目标物体反射回来的。 时间测量:设备内部的计时器记录激光脉冲发射和接收的时间间隔。由于光速是已知的,这个时间间隔可以用来计算光脉冲往返目标物体的距离。 计算距离:距离的计算公式是,距离=光速×时间/2,其中时间是光脉冲往返的时间。 数据处理:测量到的距离数据可以用于生成点云,这激光雷达在短时间内可以获取大量的位置点信息(或者称为激光点云),这些点云可以进一步处理,生成三维模型或地形图。
905nm:激光雷达接收器可以直接选用价格较低的硅材质,905nm激光雷达成为了当下最主流的激光雷达所选用的波长。不过人眼可识别的可见光波长处在390~780nm,而400~1400nm波段内激光都可以穿过玻璃体,聚焦在视网膜上,而不会被晶状体和角膜吸收,人眼视网膜温度上升10℃就会造成感光细胞损伤。因此905nm激光雷达为了避免对人眼造成伤害,发射功率需先在在对人无害的范围内。因此,905nm激光的探测距离也会受到限制。 1550nm:相比905nm激光,1550nm激光会被人眼晶状体和角膜吸收,不会对视网膜产生伤害,因此1550nm激光雷达可以发射更大功率,探测距离也可以做到更远。但是1550nm激光雷达无法采用常需要用到更加昂贵的铟镓砷(InGaAs)材质,因此在价格上较905nm激光雷达会较高。
ToF(Time of Flight,飞行时间):ToF激光雷达通过直接测量发射激光与回波的信号的时间差,基于光在空气中的传播速度得到目标物体的距离信息,具有响应速度快,探测精度高的优势。ToF方案技术成熟度高,成本相对低,为目前主要激光雷达使用的方案。
FMCW(Frequency Modulated Continuous Wave,调频连续波):FMCW激光雷达将发射激光的光频进行线性调制,通过回波信号与参考光进行相干拍频得到频率差,从而间接获得飞行时间推出目标距离。FMCW具有可直接测量速度信息和抗干扰强的优势。
机械式激光雷达:以一定的速度旋转,在水平方向采用机械结构进行 360°的旋转扫描,在垂直方向采用定向分布式扫描,机械式激光雷达的发射器、接收器都跟随扫描部件一同旋转。机械式激光雷达作为最早装车的产品,技术已经比较成熟,因为其是由电机控制旋转,所以可以长时间内保持转速稳定,每次扫描的速度都是线性的。
半固态激光雷达:发射器和接收器固定不动,只通过少量运动部件实现激光束的扫描。半固态激光雷达由于既有固定部件又有运动部件,因此也被称为混合固态激光雷达。根据运动部件类型不同,半固态激光雷达又可以细分为转镜类半固态激光雷达、MEMS半固态激光雷达和棱镜类半固态激光雷达。 全固态激光雷达:内部完全没有运动部件,使用半导体技术实现光束的发射、扫描和接收。固态激光雷达又可分为Flash固态激光雷达和OPA固态激光雷达。其中OPA(Optical Phase Array的简称,即光学相控阵)固态雷达应用的是相控阵技术,相控阵雷达发射的是电磁波,而OPA激光雷达发射的是光,而光和电磁波一样也表现出波的特性,所以原理上是一样的。波与波之间会产生干涉现象,通过控制相控阵雷达平面阵列各个阵元的电流相位,利用相位差可以让不同的位置的波源会产生干涉(类似的是两圈水波相互叠加后,有的方向会相互抵消,有的会相互增强),从而指向特定的方向,往复控制便得以实现扫描效果。光和电磁波一样也表现出波的特性,因此同样可以利用相位差控制干涉让激光“转向”特定的角度,往复控制实现扫描效果。
3、激光雷达的应用场景有哪些?
自动驾驶:在自动驾驶汽车中,激光雷达能够精确地感知车辆周围的环境,包括车辆、行人、障碍物的位置、速度和形状等,为车辆的路径规划和决策提供关键信息。 智能交通:用于交通流量监测、道路状况评估和智能交通信号控制。它可以实时检测道路上的车辆数量、速度和间距,优化交通流量。 测绘与地理信息:能够快速、高精度地获取地形、地貌和建筑物的三维信息,用于地图绘制、城市规划和土地测量。比如在大规模的地形测绘项目中,激光雷达可以生成详细的数字高程模型。 工业自动化:在工厂自动化中,用于物料搬运、机器人导航和质量检测。例如,在仓储物流中,激光雷达可以帮助自动导引车(AGV)准确地在仓库中行驶和装卸货物。 航空航天:用于飞机的防撞系统、地形跟随和地形规避。同时,在卫星遥感中,激光雷达可以测量大气参数和地表特征。 军事领域:用于目标侦察、武器制导和战场态势感知等。例如,在导弹制导系统中,激光雷达可以提高导弹的命中精度。
4、激光雷达选型时有哪些关键参数?
测距精度:表示为距离的误差
角分辨率:可以探测到最小角度,与激光束发射和接收统计相关。
扫描频率:每秒扫描次数,也称帧率,影响激光雷达的实时性能。
视场角:雷达可以覆盖的水平和垂直角度范围,决定了激光雷达可以检测到多少个目标。
工作距离:可以探测到的最远距离,实际应用和激光功率、接收机灵敏度等相关。
数据输出方式:输出数据的格式和接口类型
扫地机器人是应用非常广泛的机器人形态,扫地机器人的的关键指标主要包括,清洁能力指标,含清洁吸力、清扫部件设计、续航时间和清扫面积指标、尘盒容量、噪音指标等;智能化指标,含建图能力、导航能力、传感器配置、避障能力、自动回充能力等;控制APP易用性指标,含清扫模式设定、定时清扫设定、虚拟墙设置、地图存储等。
吸力指标:吸力的强弱直接影响清扫效果,是衡量扫地机器人清洁能力的重要指标,单位为帕斯卡(Pa)。日常家用清洁1500~2500Pa的吸力可以应对灰尘、毛发等常见垃圾;如果需要清理较大颗粒杂物或较顽固的污渍,则需要更高的吸力。当然,吸力越大通常意味着噪音和能耗也会相应增加。 清扫部件设计:包含滚刷、边刷等清洁部件的设计。滚刷位于扫地机器人底部吸尘口前方,主要作用是将底部灰尘扫起。滚刷材质有胶条滚刷和刷毛滚刷,胶条滚刷能刮掉地面顽固颗粒,刷毛滚刷可拔出地砖和地板缝隙的灰尘,一些产品采用两者结合的方式,滚刷的形状、长度、转速等设计也会影响清扫效果。边刷位于扫地机器人的边缘,可将墙边和角落的灰尘清扫出来,边刷的长度、材质以及转动灵活度等也会影响其清扫性能。对于扫拖一体的扫地机器人还需要考虑拖布的设计,拖布的材质、形状、湿润度控制等都很关键。 清扫面积和续航时间指标:续航时间决定了机器人在一次充电后能清扫的面积,单位为分钟;清扫面积以平方米(m²)计算。电池容量在3000mAh的家用扫地机器人可满足大多数日常清洁需求。 尘盒容量设计:尘盒用于收集垃圾,尘盒容量越大,可容纳的垃圾就越多,减少清理尘盒的频率。 噪音指标:清扫工作时产生的噪音,通常以分贝(dB)为单位,影响用户体验。噪音在60分贝以下的扫地机器人较为适合家用场景使用,一些扫地机器人会采用涡流降噪技术等方式来降低噪音。
建图能力:通过机器人的激光传感器扫描周围环境,构建地图,定位精度高、建图速度快。 定位和导航:可通过激光雷达传感器、惯性传感器、视觉传感器等协同导航。定位和导航中应用的不同传感器都会遇到一些限制,如应用视觉导航对光线条件有要求,光线较暗影响导航精度;应用陀螺仪和加速度计等惯性传感器获取机器人的运动信息,容易产生累积误差。 路径规划:合理的路径规划可提高扫地机器人的清洁效率和覆盖率,避免漏扫和重复清扫。比如根据房间的布局和障碍物分布,自动规划高效的清扫路线,先沿边清扫、再分区清扫等。 避障能力:扫地机器人在清扫过程中避免碰撞家具、墙壁等障碍物,减少机身磨损和损坏。通过红外避障、超声波避障、激光避障、视觉避障、碰撞传感器等协同实现避障。不同成本的扫地机器人,会配置不同的传感器组合。 自动充电:自动回充功能可以让扫地机器人在电量不足时自动返回充电座充电,充电完成后继续工作,
(3)控制APP易用性指标
机器人需支持手机等终端的APP控制、并有清洁模式选择、定时清扫、虚拟墙设置、地图存储等功能。
2、"聪明"和"不聪明"的扫地机器人的区别是什么?
智能化的扫地机器人需要具备自主导航、路径优化、动态避障、自动充电等能力。扫地机器人的智能化差别主要体现在以下几个方面。
不聪明的:通常采用随机导航,仅仅依靠超声波探测实现基础避障;容易重复清扫或遗漏区域。
聪明的:使用激光雷达、摄像头等进行地图构建和路径规划,能够高效避障。
不聪明的:传感器较少,缺乏学习能力,仅能进行基本的碰撞检测。 聪明的:配备多种传感器,通过不同的传感器协同能识别不同地面类型、障碍物和污垢区域。
不聪明的:功能简单,可能有一种或几种基本清扫模式。 聪明的:支持多种清扫模式,如自动清扫,局部清扫,边缘清扫,定点清扫,区域清扫,深度清扫,静音清扫等。聪明的扫地机器人会跟人一样,区分清楚哪些是干净的地方哪些是比较脏的地方,通过先沿边清扫、再分区清扫、最后定点深度清扫等组合操作实现智能清扫。
眼睛观察周围地标,如建筑、大树、花坛等,并记住他们的特征。 根据双眼获得的信息,在自己的脑海中把特征地标在三维地图中重建出来,形成完整的对环境认知的三维信息。 在行走时不断获取新的特征地标,并且校正自己头脑中的地图模型。 根据自己前一段时间行走获得的特征地标,确定自己的位置。 走了很长一段路的时候,我们可能会回头看看,和脑海中之前的地标进行匹配。
SLAM可以分为激光SLAM和视觉SLAM,激光SLAM可以分为2D SLAM和3D SLAM,视觉SLAM可以分为Sparse SLAM和Dense SLAM
Sparse(稀疏) SLAM如下示例
Dense(密集)SLAM如下示例
3、SLAM中有哪些关键技术点?
(1)传感器技术:外部信息的采集依赖惯性测量单元(IMU)、霍尔编码器(Encoder)、激光雷达(Lidar)、深度摄像机等。
惯性测量单元:IMU提供姿态和位置信息,原理参考激光雷达 - 感知外部信息的工具 (qq.com)
霍尔编码器:通过编码器获取车轮的运动数据,原理参考霍尔传感器 - 从左手定则到嵌入式编码 (qq.com)
激光雷达:Lidar通过发射激光束来探测目标位置、速度等特征量,感知外部信息,原理参考 激光雷达 - 感知外部信息的工具 (qq.com)
摄像机:包括单目摄像头、双目摄像头、深度摄像机,核心都是获取RGB和depth map(深度信息)。
(2)算法技术
应用SLAM算法的时候主要考虑下面几个方面
如何表示地图?比如根据实际场景需求去选择dense或sparse算法。 如何感知信息?比如选择激光雷达或者深度摄像机去感知外部环境。 如何关联传感器数据?对于不同sensor的数据类型、时间戳、坐标系表达方式各有不同,需要统一处理。 如何进行定位与构图?这是指实现位姿估计和建模,这里面涉及到很多数学问题,物理模型建立,状态估计和优化。
常见的SLAM算法包括一下算法。PTAM算法,这是早期的视觉 SLAM 算法;Mono-SLAM算法,是单目视觉SLAM算法;ORB-SLAM算法,是基于 ORB 特征的视觉SLAM算法,具有较好的实时性和鲁棒性;还有RGBD-SLAM算法、LSD-SLAM算法等。实际应用中,SLAM建图具体实现方式会因使用的算法、传感器类型以及应用场景的不同而有所差异。
使用ROS实现机器人的SLAM是非常方便的,因为有较多现成的功能包可供开发者使用,如gmapping、hector_slam、cartographer、rgbdslam、ORB_SLAM、move_base、amcl等,并且开发者还能应用仿真环境进行验证。ROS机器人操作系统可以参考ROS(Robot Operating System)机器人操作系统 (qq.com),机器人仿真工具可以参考 Gazebo - 开源机器人仿真工具 (qq.com)。
(1)SLAM技术在自动驾驶中的应用体现在以下几个方面
环境感知:自动驾驶汽车通过搭载的传感器(如激光雷达、相机、雷达等)实时获取周围环境的信息。利用SLAM技术,车辆能够从这些传感器数据中提取特征,构建出周围环境的地图。
实时定位:在行驶过程中,车辆需要实时确定自身在地图中的位置。SLAM技术通过传感器数据和地图信息,计算出车辆的精确位置和姿态。这种定位不仅依赖于GPS,还依赖于车辆自身的传感器,确保在GPS信号弱或无信号的环境中也能准确定位。
路径规划:有了环境地图和自身定位信息,自动驾驶汽车可以进行路径规划。SLAM技术帮助车辆识别可行路径,避开障碍物,规划出最优行驶路线。
自动避障:在行驶过程中,车辆需要实时检测和避开障碍物。SLAM技术通过传感器数据,识别出前方的障碍物,并计算出避障路径。
回环检测:回环检测是SLAM中的一个重要环节,指的是车辆在行驶过程中识别出曾经经过的地点。这有助于校正地图和定位信息,避免重复探索和定位误差。
动态地图更新:环境是动态变化的,自动驾驶汽车需要不断更新其地图信息。SLAM技术能够实时处理新的传感器数据,更新地图,确保地图的准确性和时效性。
传感器融合:自动驾驶汽车通常搭载多种传感器,每种传感器都有其优缺点。SLAM技术通过融合不同传感器的数据,提高整体的感知能力和鲁棒性。
数据关联:不同传感器的数据类型和时间戳可能不同,SLAM技术需要将这些数据关联起来,确保数据的一致性和准确性。
(2)SLAM技术具体实现步骤
传感器数据采集:车辆通过激光雷达、相机、IMU、超声波等传感器获取周围环境的图像和距离信息。
特征提取与匹配:从传感器数据中提取特征点,并在不同时间点的图像中进行匹配。
位姿估计:利用特征点匹配结果,计算车辆在地图中的位置和姿态。
地图构建:将车辆的移动轨迹和环境特征结合起来,逐步构建出环境地图。
路径规划与优化:根据地图和车辆定位信息,规划出最优行驶路径,并在行驶过程中不断优化。
动态更新:实时处理新的传感器数据,更新地图和定位信息,应对环境变化。
参考文档《一文看懂激光雷达LIDAR基本工作原理》
https://zhuanlan.zhihu.com/p/602055107
获取资源更直接!
本文系网络转载,版权归原作者所有。如涉及版权问题,请与机械学霸联系,我们将第一时间协商版权问题或删除内容。