近日,Nanophotonics杂志特别邀请俄罗斯ITMO大学的Andrey A. Bogdanov教授、Sergey Makarov教授和澳洲国立大学的Yuri S Kivshar教授牵头并组织编撰了非线性纳米光子学前沿特刊,收录了各种纳米光子学结构中非线性光学效应的最新研究进展。
在特刊社论中,几位教授写道:
"1961年, 得益于激光的发明及由此提高的相干光功率,Peter Franken等人首次在石英晶体板中激发了二次谐波,非线性光学自此诞生。随着电子束曝光、聚焦离子束铣削、先进沉积法等纳米制备技术的出现,纳米级精度制备成为可能,科学家们开始进一步探索和利用纳米尺度下的非线性光学效应,这推动了非线性纳米光子学的发展。如今,非线性纳米光子学是光学中最有前景的方向之一,可应用于包括生物医学成像、环境感测、安全通信、量子计算等诸多领域。
本特刊收录有33篇原创研究论文和4篇专题综述文章,均有关非线性纳米光子学领域的前沿研究及最新进展,具体收录文章概况如图1 所示。
SHG是各类纳米光子结构中最常见的非线性效应之一,目前仍有较高的研究热度。本特刊收录了从理论和实验两方面研究包括硅纳米颗粒、Si/SiO2多孔材料、磷化镓和AlGaAs超表面等半导体纳米结构中SHG的研究论文[5],[6];观察AlGaAs超表面二次谐波信号中异常固有非线性几何相位的研究论文[7];讨论另一种具有增强的二阶光学非线性、可用于高效的电光调制、与CMOS兼容可用于集成非线性光子器件的材料AlScN的研究论文[8];精确控制等离激元二聚体不对称性以显著增强其二次谐波信号的研究论文[9];将散射体不对称性与强度相关介电常数结合产生强非对称行为,从而实现非线性散射体在激发方向隐身同时反向强散射的研究论文[10]。
特刊封面文章通过优化V形金纳米天线构成矩形超光栅阵列的间距,将衍射级次与单天线辐射对齐以最大化SHG信号[11]; 系统研究不同激发功率下等离激元纳米颗粒的光致发光行为,并揭示PL可以从等离激元增强辐射过渡到类似黑体辐射状态[12]。
References
[1] S. Psilodimitrakopouloso, S. Ilin, L. Zelenkov, S. Makarov, and E. Stratakis, “Tailoring of the polarization-resolved second harmonic generation in two-dimensional semiconductors,” Nanophotonics, vol. 13, no. 18, pp. 3181–3206, 2024. https://doi.org/10.1515/nanoph-2024-0267.
[2] Y. Wang, et al.., “A review of gallium phosphide nanophotonics towards omnipotent nonlinear devices,” Nanophotonics, vol. 13, no. 18, pp. 3207–3252, 2024. https://doi.org/10.1515/nanoph-2024-0172.
[3] W. Geng, et al.., “Nonlinear photonics on integrated platforms,” Nanophotonics, vol. 13, no. 18, pp. 3253–3278, 2024. https://doi.org/10.1515/nanoph-2024-0149.
[4] Y. Lu, et al.., “Nonlinear optical physics at terahertz frequency,” Nanophotonics, vol. 13, no. 18, pp. 3279–3298, 2024. https://doi.org/10.1515/nanoph-2024-0109.
[5] V. Mastalieva, et al.., “Second harmonic generation and broad-band photoluminescence in mesoporous Si/SiO2 nanoparticles,” Nanophotonics, vol. 13, no. 18, pp. 3299–3309, 2024. https://doi.org/10.1515/nanoph-2024-0218.
[6] M. Yang, et al.., “Second harmonic generation in monolithic gallium phosphide metasurfaces,” Nanophotonics, vol. 13, no. 18, pp. 3311–3319, 2024. https://doi.org/10.1515/nanoph-2024-0177.
[7] L. Carletti, D. Rocco, M. A. Vincenti, D. de Ceglia, and C. De Angelis, “Intrinsic nonlinear geometric phase in SHG from zincblende crystal symmetry media,” Nanophotonics, vol. 13, no. 18, pp. 3321–3326, 2024. https://doi.org/10.1515/nanoph-2024-0162.
[8] V. Yoshioka, J. Jin, H. Zhou, Z. Tang, R. H. OlssonIII, and Bo Zhen, “CMOS-compatible, AlScN-based integrated electro-optic phase shifter,” Nanophotonics, vol. 13, no. 18, pp. 3327–3335, 2024. https://doi.org/10.1515/nanoph-2024-0263.
[9] Y. Wang, Z. Peng, Y. De Wilde, and D. Lei, “Symmetry-breaking-induced off-resonance second-harmonic generation enhancement in asymmetric plasmonic nanoparticle dimers,” Nanophotonics, vol. 13, no. 18, pp. 3337–3346, 2024. https://doi.org/10.1515/nanoph-2024-0118.
[10] H. Goh, A. Krasnok, and A. Alù, “Nonreciprocal scattering and unidirectional cloaking in nonlinear nanoantennas,” Nanophotonics, vol. 13, no. 18, pp. 3347–3353, 2024. https://doi.org/10.1515/nanoph-2024-0212.
[11] A. Verneuil, et al.., “Far-field mapping and efficient beaming of second harmonic by a plasmonic metagrating,” Nanophotonics, vol. 13, no. 18, pp. 3609–3614, 2024. https://doi.org/10.1515/nanoph-2023-0842.
[12] X. Fang, J. Wang, and M. Qiu, “Metallic photoluminescence of plasmonic nanoparticles in both weak and strong excitation regimes,” Nanophotonics, vol. 13, no. 18, pp. 3355–3361, 2024. https://doi.org/10.1515/nanoph-2023-0884.
[13] N. Li, J. Zhang, D. N. Neshev, and A. A. Sukhorukov, “Inverse design of nonlinear metasurfaces for sum frequency generation,” Nanophotonics, vol. 13, no. 18, pp. 3363–3372, 2024. https://doi.org/10.1515/nanoph-2024-0137.
[14] Y. Tao, et al.., “Tunable third harmonic generation based on high-Q polarization-controlled hybrid phase-change metasurface,” Nanophotonics, vol. 13, no. 18, pp. 3373–3384, 2024. https://doi.org/10.1515/nanoph-2024-0113.
[15] S. Vijayakumar, et al.., “Phase-matched third-harmonic generation in silicon nitride waveguides,” Nanophotonics, vol. 13, no. 18, pp. 3385–3393, 2024. https://doi.org/10.1515/nanoph-2024-0120.
[16] G. Sartorello, et al.., “Nonlinear mid-infrared meta-membranes,” Nanophotonics, vol. 13, no. 18, pp. 3395–3402, 2024. https://doi.org/10.1515/nanoph-2024-0203.
[17] K. Cui, T. Zhang, T. Rao, X. Zhang, S. Zhang, and H. Xu, “Phase matched five-wave mixing in zinc oxide microwire,” Nanophotonics, vol. 13, no. 18, pp. 3403–3409, 2024. https://doi.org/10.1515/nanoph-2024-0129.
[18] V. Korolev, et al.., “Tunable high-order harmonic generation in GeSbTe nano-films,” Nanophotonics, vol. 13, no. 18, pp. 3411–3419, 2024. https://doi.org/10.1515/nanoph-2023-0859.
[19] G. Q. Moretti, et al.., “Si metasurface supporting multiple quasi-BICs for degenerate four-wave mixing,” Nanophotonics, vol. 13, no. 18, pp. 3421–3428, 2024. https://doi.org/10.1515/nanoph-2024-0128.
[20] A. A. Nazarenko, et al.., “Cryogenic nonlinear microscopy of high-Q metasurfaces coupled with transition metal dichalcogenide monolayers,” Nanophotonics, vol. 13, no. 18, pp. 3429–3436, 2024. https://doi.org/10.1515/nanoph-2024-0182.
[21] J. T. Wang, J. W. You, and N. C. Panoiu, “Giant second-harmonic generation in monolayer MoS2 boosted by dual bound states in the continuum,” Nanophotonics, vol. 13, no. 18, pp. 3437–3448, 2024. https://doi.org/10.1515/nanoph-2024-0273.
[22] P. Ren, et al.., “Quasi-BICs enhanced second harmonic generation from WSe2 monolayer,” Nanophotonics, vol. 13, no. 18, pp. 3449–3456, 2024. https://doi.org/10.1515/nanoph-2024-0108.
[23] L. Chu, Z. Li, H. Zhu, H. Lv, and F. Chen, “Intense second-harmonic generation in two-dimensional PtSe2,” Nanophotonics, vol. 13, no. 18, pp. 3457–3464, 2024. https://doi.org/10.1515/nanoph-2024-0107.
[24] X. Liu, D. Wei, C. Chang, D. Liu, J. Li, and D. Wei, “Efficient generation of octave-separating orbital angular momentum beams via forked grating array in lithium niobite crystal,” Nanophotonics, vol. 13, no. 18, pp. 3465–3476, 2024. https://doi.org/10.1515/nanoph-2024-0174.
[25] Y. Su, et al.., “High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide,” Nanophotonics, vol. 13, no. 18, pp. 3477–3484, 2024. https://doi.org/10.1515/nanoph-2024-0168.
[26] K. Guo, H. Wang, J. Xiong, J. Wu, B. Liu, and Z. Guo, “Shape unrestricted topological corner state based on Kekulé modulation and enhanced nonlinear harmonic generation,” Nanophotonics, vol. 13, no. 18, pp. 3485–3494, 2024. https://doi.org/10.1515/nanoph-2024-0116.
[27] C. Huang, C. Shang, Y. V. Kartashov, and F. Ye, “Vortex solitons in topological disclination lattices,” Nanophotonics, vol. 13, no. 18, pp. 3495–3502, 2024. https://doi.org/10.1515/nanoph-2023-0790.
[28] H. Sigurðsson, H. Chau Nguyen, and H. S. Nguyen, “Dirac exciton–polariton condensates in photonic crystal gratings,” Nanophotonics, vol. 13, no. 18, pp. 3503–3518, 2024. https://doi.org/10.1515/nanoph-2023-0834.
[29] M. Marangi, et al.., “Enhancing cooperativity of molecular J-aggregates by resonantly coupled dielectric metasurfaces,” Nanophotonics, vol. 13, no. 18, pp. 3519–3526, 2024. https://doi.org/10.1515/nanoph-2024-0117.
[30] Q. Lu, Z. Feng, and X. Sun, “Symmetry-protected bound states in the continuum on an integrated photonic platform,” Nanophotonics, vol. 13, no. 18, pp. 3527–3534, 2024. https://doi.org/10.1515/nanoph-2024-0196.
[31] J. Williams, et al.., “Ultrashort pulse biphoton source in lithium niobate nanophotonics at 2 μm,” Nanophotonics, vol. 13, no. 18, pp. 3535–3544, 2024. https://doi.org/10.1515/nanoph-2024-0054.
[32] E. A. Santos, M. A. Weissflog, T. Pertsch, F. Setzpfandt, and S. Saravi, “Entangled photon-pair generation in nonlinear thin-films,” Nanophotonics, vol. 13, no. 18, pp. 3545–3561, 2024. https://doi.org/10.1515/nanoph-2024-0111.
[33] M. A. Weissflog, et al.., “Directionally tunable co- and counterpropagating photon pairs from a nonlinear metasurface,” Nanophotonics, vol. 13, no. 18, pp. 3563–3573, 2024. https://doi.org/10.1515/nanoph-2024-0122.
[34] H. Wang, et al.., “All-optical modulator with photonic topological insulator made of metallic quantum wells,” Nanophotonics, vol. 13, no. 18, pp. 3575–3580, 2024. https://doi.org/10.1515/nanoph-2024-0197.
[35] M. Pal Vikram, et al.., “Photo-thermo-optical modulation of Raman scattering from Mie-resonant silicon nanostructures,” Nanophotonics, vol. 13, no. 18, pp. 3581–3589, 2024. https://doi.org/10.1515/nanoph-2023-0922.
[36] T. Yezekyan, M. Thomaschewski, P. C. V. Thrane, and S. I. Bozhevolnyi, “Plasmonic electro-optic modulators on lead zirconate titanate platform,” Nanophotonics, vol. 13, no. 18, pp. 3591–3598, 2024. https://doi.org/10.1515/nanoph-2024-0039.
[37] P. Sun, X. Hu, S. Yuan, Y. Peng, T. Xu, and H. Zhong, “Miniature spectrometer based on graded bandgap perovskite filter,” Nanophotonics, vol. 13, no. 18, pp. 3599–3607, 2024. https://doi.org/10.1515/nanoph-2024-0112.