1 Aronson JK, Heneghan C, Ferner RE (2020) Medical devices: definition, classification, and regulatory implications. Drug Saf 43(2):83–93. https://doi.org/10.1007/s40264-019-00878-3
2 Bianco C (2010) Integrating a risk-based approach and ISO 62304 into a quality system for medical devices. In: Proceedings of the 19th Safety-Critical Systems Symposium, p.111–125. https://doi.org/10.1007/978-0-85729-133-2_7
3 Rabin RL, Picard AJ (2018) Reassessing the regulation of high-risk medical device cases. DePaul L Rev 68:309. https://doi.org/10.2139/ssrn.3383687
4 Kaushik D, Rai S, Dureja H et al (2013) Regulatory perspectives on medical device approval in global jurisdiction. J Generic Med 10(3–4):159–171. https://doi.org/10.1177/1741134314553137
5 IMDRF (2024) International Medical Device Regulators Forum (IMDRF). https://www.imdrf.org
6 Rojas-Cordova AC, Bish EK, Hosseinichimeh N (2020) Decision-making in sequential adaptive clinical trials, with implications for drug misclassification and resource allocation. In: Smith AE (Ed.), Women in Industrial and Systems Engineering: Key Advances and Perspectives on Emerging Topics. Springer, Cham, p.321–345. https://doi.org/10.1007/978-3-030-11866-2_14
7 Arnould A, Hendricusdottir R, Bergmann J (2021) The complexity of medical device regulations has increased, as assessed through data-driven techniques. Prosthesis 3(4):314–330. https://doi.org/10.3390/prosthesis3040029
8 Han Y, Ceross A, Bergmann JH (2023) Uncovering regulatory affairs complexity in medical products: a qualitative assessment utilizing open coding and natural language processing (NLP). https://doi.org/10.48550/arxiv.2401.02975
9 Mingay HRF, Hendricusdottir R, Ceross A et al (2022) Using rule-based decision trees to digitize legislation. Prosthesis 4(1):113–124. https://doi.org/10.3390/prosthesis4010012
10 Bergmann JH, Hendricusdottir R, Lee R (2019) Regulatory navigation: a digital tool to understand medical device classification pathways. In: Moo-Young M (Ed.), Comprehensive Biotechnology. Elsevier, Amsterdam, p.167–172. https://doi.org/10.1016/B978-0-444-64046-8.00287-1
11 Ceross A, Bergmann J (2021) A machine learning approach for medical device classification. In: Proceedings of the 14th International Conference on Theory and Practice of Electronic Governance, p.285–291. https://doi.org/10.1145/3494193.3494232
12 Yang JF, Jin HY, Tang RX et al (2023) Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond. ACM Trans Knowl Discov Data 18(6):1–32. https://doi.org/10.1145/3649506
13 Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digit Med 3(1):118. https://doi.org/10.1038/s41746-020-00324-0
14 van Leeuwen KG, Schalekamp S, Rutten MJ et al (2021) Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 31(6):3797–3804. https://doi.org/10.1007/s00330-021-07892-z
15 Motola D, De Ponti F (2006) Generic versus brand-name medicinal products: are they really interchangeable? Digest Liver Dis 38(8):560–562. https://doi.org/10.1016/j.dld.2006.03.017
16 Fui-Hoon Nah F, Zheng RL, Cai JY et al (2023) Generative AI and ChatGPT: applications, challenges, and AI-human collaboration. J Inform Technol Case Appl 25(3):277–304. https://doi.org/10.1080/15228053.2023.2233814
17 Walker HL, Ghani S, Kuemmerli C et al (2023) Reliability of medical information provided by ChatGPT: assessment against clinical guidelines and patient information quality instrument. J Med Internet Res 25(1):e47479. https://doi.org/10.2196/47479
18 Billiones R (2020) Eudamed’s delay and its impact on discolsure of clinical investigations under the EU MDR. Med Writ 29(3):12–15
19 Zhang X, Li SY, Hauer B et al (2023) Don’t trust ChatGPT when your question is not in English: a study of multi-lingual abilities and types of LLMs. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, p.7915–7927