【对话前沿专家】基于铁电晶体管科研,共探集成电路的创新之路

科技   2024-09-24 17:30   上海  
点击上方“泰克科技” 关注我们!

后摩尔时代专题,泰克张欣与北大集成电路学院唐克超老师共话铁电晶体管、存储计算科研进展

人工智能和大数据技术的飞速发展对芯片存储性能和算力提出了更高的需求。传统的计算架构逐渐显露出局限性,这促使学术界和产业界开始探索新的计算架构和信息器件。在后摩尔时代,铁电晶体管(FeFET)作为一种新型的信息器件,因其在存储和计算领域的潜在应用而备受关注。

泰克科技北京大学集成电路学院唐克超课题组联合举办了一场学术交流访谈会,旨在探讨高耐久性氧化铪基铁电晶体管(FeFET)器件及其在集成电路领域的应用前景。在这次访谈交流中,讲座主讲人北京大学集成电路学院的唐克超老师分享了他们团队在铁电材料和器件研究方面的最新成果,并探讨了当前研究的难点痛点以及未来可能的解决之道。

唐克超老师团队专注于铁电材料及相关存储器件的研究,特别关注氧化铪基铁电材料他指出氧化铪基铁电存储器由于其高密度集成潜力而受到重视,但耐久性是器件应用面临的一个核心的挑战。团队的主要目标是解决耐久性问题并协同优化器件性能,研究涉及铁电耐久性原理、耐久性和存储密度优化以及阵列制备和应用等方面。


👇点击下方视频,探索铁电材料和器件的研究进展和产业化应用


铁电存储器的特性和应用前景

张欣:您如何看待铁电材料在集成电路领域的应用前景?

唐老师:目前有三种主流的铁电器件技术:FeRAM、FeFET和FTJ,各自具有独特的特性和应用前景。在存储技术领域,目前FTJ的成熟度相对较低,因此研究和开发主要集中在FeRAM和FeFET上,这两种技术更接近实际应用和产业化。

FeRAM,即基于电容型的铁电存储器,其结构与现有的DRAM类似。基于钙钛矿铁电的FeRAM已有商业化产品,而氧化铪基FeRAM也有较好的产业化前景。它旨在提供非易失性的高速存储方案,将快速数据访问和低静态功耗特性相结合,契合集成电路对速度和功耗的发展需求。FeFET,即基于晶体管型的铁电存储器,是我们团队的研究重点。这种存储器以其高集成密度、高速读写和低功耗而受到关注。FeFET的优势在于其三端器件读写分离的特点,这使得它可以在数据读取后不需要进行重写,提高器件操作效率,并非常适合存算一体、神经形态计算和硬件安全等新型应用。FTJ即基于隧穿结的铁电存储器,目前偏向于前沿研究阶段。FTJ面临的主要挑战是其较小的读电流,这限制了器件的读取速度。尽管如此,FTJ在神经形态计算等低功耗应用中显示出巨大潜力。


铁电存储研究中遇到的挑战

张欣:在FeFET的研究中,您的团队遇到了哪些挑战?

唐老师:目前来说,FeFET面临的最大挑战是耐久性问题,即在反复编程和擦写后性能衰减。我们发现,界面电场过高是导致这一问题的主要原因,而这需要系统性的优化。尽管FeFET器件在读写速度和功耗方面具有显著优势,但其耐久性问题一直是制约其广泛应用的主要障碍。FeFET耐久性问题的核心原因就是因为它在进行写操作的时候,界面层的电场非常的高,甚至可以超过氧化硅的击穿电场。所以这就会导致器件在循环过程中,电场驱动界面电荷的俘获与积累,导致新的电荷陷阱产生,同时在一定程度之后还会引起界面层的击穿,最终导致器件的失效。团队在这一领域取得了突破性成果,通过新型铁电材料的引入和铁电-界面协同优化,显著提升了FeFET器件的耐久性。

张欣:对于铁电器件,它就是通过局域电场让铁电发生翻转来实现0和1的表征。对于这个问题,岂不是铁电材料与生俱来的吗?

唐老师:铁电材料的极化状态通常需要电场的作用才能翻转,而在铁电场效应晶体管(FeFET)中,这一现象尤为显著。FeFET的大部分电场实际上并不是直接作用于铁电层,而是集中在铁电层与沟道之间的12纳米的界面上。通过电荷连续性方程的计算,我们可以发现,该界面处的电场强度远高于传统金属氧化物半导体场效应晶体管(MOSFET)的界面电场。因此在FeFET中,界面处的可靠性问题会被进一步放大。要解决这一问题,需要从多个角度进行全面的考量,包括铁电材料本身对电场的响应,界面结构和缺陷对电场的影响,以及界面层结构本身的稳定性等。


测量方法及测量表征建议

张欣:如果要做FeFET测试和表征的话,需要有哪些量测方法?

唐老师:FeFET器件很多不同的角度的测试,包括像转移曲线Id-Vg、读写速度、耐久性和保持性的测试,以及还需要在阵列的读写功能和串扰问题等方面的一些测试。

转移曲线(Id-Vg)测试是测量器件在不同栅极电压下的电流-电压特性,以评估其开关特性、阈值电压和存储能力。读写速度测试,用来评估FeFET在实际工作条件下的响应速度。耐久性测试通过反复进行编程和擦写操作,评估器件的长期稳定性和可靠性。保持性测试测量器件在无偏压条件下保持存储状态的能力。阵列读写和串扰测试,用于评估在集成的阵列中,器件之间的相互影响和串扰问题。

张欣:在FeFET的电学表征和测量方面,您有哪些经验和建议?

唐老师:我们需要精确测量FeFET在快速操作下的电流和电荷,这要求测试设备具备高速度和高精度。我们通常使用AWG、半导体参数分析仪和高带宽示波器来进行这些测试。

主要涉及四类产品。第一类是任意波形发生器(AWG),用于产生各种测试信号,特别是高速脉冲,用于测量极化翻转速度等动力学特性;第二类是半导体参数分析仪,如4200A-SCS,用于测量FeFET的基本电学特性,例如Ig-Vd,并搭载源测量单元(SMU)或脉冲测量单元(PMU)进行读和写操作,多用于可靠性和保持性的测试;另外,测量非常高速的信号还要用到高带宽示波器,尤其是当需要表征铁电材料的动态行为,如亚纳秒级别的快速响应时;除了这三项关键设备,在进行阵列测试中还需要使用到矩阵开关,以便能够快速选择并测试阵列中的单个器件,而不需要手动逐一连接。

总结来说,FeFET的测试和表征需要一系列精密的设备和细致的测试方法,以确保能够全面评估其电学性能和可靠性。随着技术的发展和阵列规模的增大,测试过程的自动化将变得越来越重要。


未来商业化仍充满挑战

张欣:那像铁电FeFET目前还是在实验室处于科研的阶段。未来商业化量产可能会在什么样的时间节点?

唐老师:预测FeFET的商业化时间表存在难度,因为前沿技术和产业发展的不确定性较高。比较近期最有可能实现商业化应用的应该是嵌入式非易失性存储器(eNVM),尽管现阶段市场相对较小,竞争也比较激烈,但长久来看仍可为高性能存储和新型计算架构提供有力的发展平台。这类应用比较有希望在5年内实现。除此之外,在相对更加主流的存储器市场,FeFET还比较有希望应用于NAND型高密度存储器。铁电材料的引入可以在三维NAND Flash基础上,实现存储密度和读写速度的进一步提升。当然现阶段NAND型的FeFET仍面临诸多技术挑战,包括缩小尺寸后的存储窗口、耐久性、保持性、一致性等,以及阵列中的串扰问题。对于这一领域,可能需要510年的时间实现大规模商业化生产。

|泰克云上大讲堂课堂|

唐老师将于10月24日作客泰克云上大讲堂,为大家带来关于【高耐久性氧化铪基铁电晶体管器件与应用】的直播讲座,扫码抢先报名:


点击阅读原文注册报名

欲知更多产品和应用详情,您还可以通过如下方式联系我们:

邮箱:china.mktg@tektronix.com

网址:tek.com.cn

电话:400-820-5835(周一至周五9:00-17:00)

将您的灵感变为现实

我们提供专业的测量洞见信息,旨在帮助您提高绩效以及将各种可能性转化为现实。
泰克设计和制造能够帮助您测试和测量各种解决方案,从而突破复杂性的层层壁垒,加快您的全局创新步伐。我们携手共进,一定能够帮助各级工程师更方便、更快速、更准确地创造和实现技术进步。

扫码添加“泰克工程师小助手”

立享1对1专属服务!

扫码关注Fortive公众号,一起加入福迪威大家庭

点击“阅读原文”注册报名!

泰克科技
泰克科技官方微信订阅号:泰克吉时利品牌信息发布平台
 最新文章