天然氢气研究的现状、进展及展望
孟庆强 1,2 , 金之钧 1,3,4 , 刘全有 3 , 孙冬胜 1 , 孙建芳 1 , 朱东亚 1 , 黄晓伟 5 , 周袁 6 , 李强 2 , 魏永波 7 , 苏宇通 3 , 王璐 3 , 李朋朋 3 , 刘润超 3 , 刘佳宜 1
(1. 中国石化 石油勘探开发研究,北京100083;2. 山东科技大学,山东 青岛 266590;3. 北京大学,北京100085;4. 北京大学 鄂尔 多斯能源研究院,内蒙古 鄂尔多斯,017000;5. 中国地质大学(北京),北京100083;6. 中国石油大学(北京),北京102206;7. 中国科学院 地质与地球物理研究所,北京100026 )
DOI:10.11743/ogg20240519
摘 要: 化石能源导致的碳排放对环境可持续发展构成了巨大挑战,寻找低碳甚至零碳排放的清洁能源,是能源研究领域的重大科学问题和技术难题。天然氢气以其高热值、零排放和低价格的特点被视为未来最理想的清洁能源。通过分析氢气获取方式及发展趋势、天然氢气的形成及富集机理、分布特征、天然氢气形成与示踪、运移与保存理论和技术等的新进展,综合研究全球天然氢气勘探实践采用的新方法、取得的新成果,提出了天然氢气形成、保存与成藏理论、技术的关键科学问题。研究认为:天然氢气的资源量较大,形成机理多样,聚集过程复杂,勘探与开发风险较大,应加强基础理论研究,积极进行天然氢气勘探开发技术、装备研发;提出天然氢气勘探的“遥感圈方向,物探定来源,化探选目标”的工作方法;政府、行业应该在政策上予以积极支持,加强顶层设计,出台相关政策,推动天然氢气的研究与勘探开发。
关键词: 成藏规律; 保存机理; 形成速率; 天然氢气
Current status, advances, and prospects of research on natural hydrogen
MENG Qingqiang 1,2 , JIN Zhijun 1,3,4 , LIU Quanyou 3 , SUN Dongsheng 1 , SUN Jianfang 1 , ZHU Dongya 1 , HUANG Xiaowei 5 , ZHOU Yuan 6 , LI Qiang 2 , WEI Yongbo 7 , SU Yutong 3 , WANG Lu 3 , LI Pengpeng 3 , LIU Runchao 3 ,LIU Jiayi 1
(1. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China;2. Shandong University of Science and Technology, Qingdao, Shandong 266590, China;3. Peking University, Beijing 100085, China;4. Ordos Research Institute of Energy, Peking University, Ordos, Inner Mongolia 017000, China;5. China University of Geosciences (Beijing), Beijing 100083, China;6. China University of Petroleum (Beijing), Beijing 102206, China;7. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100026, China )
氢气是一种无色、无味的可燃气体,是分子量最小的气体单质,具有较强的还原性。与甲烷相比,氢气具有热值高、燃烧后二氧化碳零排放等优点,是能源转型的理想气体,全球氢气呈现出生产和需求持续增长的态势。然而,目前主要的产氢方式是化石能源重整制氢,会不可避免地排放一定数量的二氧化碳,二氧化碳减排依然面临较大压力。地质环境中的天然氢气,因其形成过程中无二氧化碳排放,又被称为金氢或白氢,是目前国外能源气体研究领域的热点,因此也涌现了一批以天然氢气为目标的资源勘探公司。前人对天然氢气的形成和分布做了较多的探讨,并提出了多种天然氢气形成与富集的地质模型,丰富和完善了天然氢气形成与富集机理研究。但是,由于前人对研究区大地构造特征的理解存在显著差异,提出的地质模型均有较强的地域性。针对不同构造背景下天然氢气的形成与富集过程的差异性及其共性特征进行深入研究,可以进一步明确天然氢气形成及其富集的过程与机理,提高天然氢气勘探和利用效率。因此,本文在前人研究的基础上,结合中国天然氢气研究的最新进展,系统分析不同天然氢气形成地质模型之间的差异,总结天然氢气富集的规律,提出天然氢气勘探方法,并对未来的研究方向进行预测,不但可以深化天然氢气形成机理研究,而且有利于推动天然氢气勘探实践,为更好地利用天然氢气资源提供借鉴。
1 利用天然氢气是社会和经济发展的必然趋势
获取能源的形式决定着社会经济发展的走向。工业革命以来,能源的获取方式是推动社会生产力高度发展的内在驱动力。氢气,特别是天然氢气,将是未来能源的重要组成部分。
1.1 氢气需求强劲增长
氢气作为化工气体,在石油石化产业得到了广泛应用,作为能源气体方兴未艾。美国、日本和欧洲等较早开展氢能研究,建设了相对成熟的氢能基础设施,全球正处于氢能发展的高潮。1974年,国际氢能协会(IAHE)成立;1998年,欧盟成立了欧洲联合氢能项目(EIHP);2003年,国际能源署(IEA)的24个会员国成立了IEA氢气协调会(HGG),建立了氢能技术的国际合作框架;2003年,“氢能经济国际合作伙伴”(IPHE)会议在美国举行,引导全球向“氢经济”过渡[1]。
据国际氢能委员会和麦肯锡公司统计,截至2023年12月,全球总共宣布了1 400余个输氢管道项目,与之相关的投资为5 700×108美元,比2022年分别增加了34.6 %和31.0 %[2]。麦肯锡公司预计到2050年,在全球变暖幅度不超1.5℃的前提下,全球氢气需求量为(12 500~58 500)×104 t/a(图1a),其中化石能源重整制氢的需求量将持续下降,最大降幅约为6 000×104 t/a(图1b)[3]。
中国在2050年的氢气需求量将达到11 200×104 t/a,其中用于能源领域的氢气为200×104 t/a,清洁氢气占比约为82 %(图2)[3]。而中国2023年氢气产量约为3 300×104 t[4],主要以化石能源重整制氢为主,电解水制氢产量约为2×104 t[5]。
1.2 氢气获取方式及发展趋势
现阶段,氢气主要通过煤制氢、天然气重整制氢、甲醇制氢、工业副产气(焦炉煤气和炼厂尾气)制氢以及电解水制氢等人工制氢方式获得[6]。上述制氢过程均需要消耗化石能源,并排放一定数量的二氧化碳,因此,利用这些技术生产的氢气,被称为“二次能源”。依据制氢过程中排放的二氧化碳的强度,人工制氢可以分为“灰氢”“蓝氢”和“绿氢”。灰氢是指利用化石燃料制氢过程中,排放较多二氧化碳的氢气。蓝氢是结合二氧化碳埋藏(及利用)技术的化石燃料制氢获得的氢气。绿氢是利用清洁能源或可再生能源获得电力,并通过电解水制氢技术得到的氢气。前二者的特点是氢气价格便宜,后者的特点是价格较贵。但随着CCS或者CCUS过程中二氧化碳价格的提高,蓝氢的价格也将进一步提高。电解槽产能增加、可再生能源发电价格降落会进一步降低绿氢的生产成本,目前各种制氢技术及其特点如表1所示。
表1 当前主要制氢技术及其特点对比(修改自文献[6])
Table 1 Comparison of current major technologies for hydrogen production and their characteristics (modified after reference [6])
2 天然氢气研究现状
2.1 天然氢气的分布特征
图3 全球天然氢气气苗分布 (修改自文献[31])
Fig.3 Global distribution of natural hydrogen seepages (modified after reference [31])
2.2 天然氢气富集机理
(1) |
图4 基于天然气组分含量特征的天然氢气识别模板(据文献[27])
Fig.4 Template for identifying natural hydrogen based on natural gas composition (reference [27])
图5 天然氢气成因判识模板(据文献[53])
Fig.5 Template for identifying the origin of natural hydrogen (reference [53])
图6 深源氢气形成及运移模式(据文献[94])
Fig.6 Formation and migration patterns of natural hydrogen with a deep-seated origin (reference [94])
① 水被辐照分解生氢;②橄榄石水-岩反应生氢;③基底断裂输导深源氢气;④地表“仙女圈”分布;⑤地表微生物降解有机质生氢;⑥地层中非微生物消耗氢气;⑦断裂带周缘氢气井;⑧盆地内部氢气发现井;⑨断裂带附近氢气与其他伴生气体分布井
图8 氢气成藏要素地质模型(据文献[104])
Fig.8 Geologic model showing factors governing hydrogen accumulation (reference [104])
H2a.以对流形式运移的氢气;H2d.以扩散形式运移的氢气
图9 天然氢气富集地质模型(据文献[104])
Fig.9 Geologic model showing natural hydrogen enrichment (reference [104])
图10 板块碰撞带富氢地质模型(据文献[29])
Fig.10 Geologic model showing hydrogen enrichment in a plate collision zone (reference [29])
3 全球天然氢气勘探实践新进展
3.1 政府和行业的政策支持力度逐渐增强
3.2 勘探方法新进展
3.3 天然氢气勘探新进展
图11 三水盆地地表天然氢气分布特征(修改自文献[117])
Fig.11 Distribution of natural hydrogen on the surface of the Sanshui Basin, China (modified after reference [117])
4 启示及展望
4.1 解放思想,是发现天然氢气的第一步
4.2 政府及行业的支持,是推动天然氢气理论及实践发展的关键力量
4.3 天然氢气的勘探与开发有例可循,但“内外有别”
4.4 天然氢气的勘探与开发风险较大
4.5 未来工作建议
5 结论
1 张然. 全球氢能产业发展的现状与趋势[EB/OL]. (2021-05-18)[2024-06-07]. https://fdi.mofcom.gov.cn/resource/pdf/2021/05/18/e0464fc02abe4c9b9054a9258f82f812.pdf.
ZHANG Ran. The current status and trends of the global hydrogen energy industry[EB/OL]. (2021-05-18)[2024-06-07]. https://fdi.mofcom.gov.cn/resource/pdf/2021/05/18/e0464fc02abe4c9b9054a9258f82f812.pdf.
2 Hydrogen Council, McKinsey & Company. Hydrogen insights 2023[EB/OL]. (2023-05-11)[2024-06-07]. https://hydrogencouncil.com/wp-content/uploads/2023/12/Hydrogen-Insights-Dec-2023-Update.pdf.
3 McKinsey & Company. Global energy perspective 2023:Hydrogen outlook[EB/OL]. (2024-01-10)[2024-06-07]. https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook.
4 熊庆人. 氢能技术发展现状及其标准化[J]. 中国标准化, 2024(5):95-101.
XIONG Qingren. Technological development status and standardization of hydrogen energy[J]. China Standardization, 2024(5):95-101.
5 冉永平, 丁怡婷. 我国首个万吨级光伏绿氢项目全面投产[N]. 人民日报, 2023-08-31(10).
RAN Yongping, DING Yiting. China’s first 10000 ton photovoltaic green hydrogen project is fully put into operation[N]. People’s Daily, 2023-08-31(10).
6 徐硕, 余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版), 2021, 23(6):1-12.
XU Shuo, YU Biying. Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2021, 23(6):1-12.
7 European Commission. REPowering the EU with hydrogen valleys:Clean hydrogen partnership invests EUR 105.4 million for funding 9 hydrogen valleys across Europe[EB/OL]. (2023-01-31)[2024-06-07]. https://www.clean-hydrogen.europa.eu/media/news/repowering-eu-hydrogen-valleys-clean-hydrogen-partnership-invests-eur-1054-million-funding-9-2023-01-31_en?utm_source=Google&utm_medium=email&utm_campaign=Hydrogen+call+22.
8 U.S. Department of Energy. U.S. national clean hydrogen strategy and roadmap[EB/OL]. (2023-06-05)[2024-06-07]. https://www.hydrogen.energy.gov/library/roadmaps-vision/clean-hydrogen-strategy-roadmap.
9 中华人民共和国国家发展和改革委员会, 国家能源局. 氢能产业发展中长期规划(2021-2035年)[EB/OL]. [2024-06-07]. http://zfxxgk.nea.gov.cn/1310525630_16479984022991n.pdf.
National Development and Reform Commission, National Energy Administration. Medium- and long-term planning for the development of the hydrogen energy industry(2021-2035)[EB/OL]. [2024-06-07]. http://zfxxgk.nea.gov.cn/1310525630_16479984022991n.pdf.
10 PETERSEN H C. Does natural hydrogen exist?[J]. International Journal of Hydrogen Energy, 1990, 15(1):55.
11 HAND E. Hidden hydrogen[J]. Science, 2023, 379(6633):630-636.
12 COUZIN-FRANKEL J, HAND E, LANGIN K, et al. Runners-up[J]. Science, 2023, 382(6676):1228-1233.
13 戴金星. 云南省腾冲县硫磺塘天然气的碳同位素组成特征和成因[J]. 科学通报, 1988, 33(15):1168-1170.
DAI Jinxing. Composition characteristics and origin of carbon isotope of Liuhuangtang natural gas in Tengchong county, Yunnan province[J]. Chinese Science Bulletin, 1988, 33(15):1168-1170.
14 戴金星, 戴春森, 宋岩, 等. 中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成[J]. 中国科学(B辑), 1994, 24(4):426-433.
DAI Jinxing, DAI Chunsen, SONG Yan, et al. Geochemical characters, carbon and helium isotopic compositions of natural gas from hot springs of some areas in China[J]. Science in China(Series B), 1994, 24(4):426-433.
15 王先彬, 徐胜, 陈践发, 等. 腾冲火山区温泉气体组分和氦同位素组成特征[J]. 科学通报, 1993, 38(9):814-817.
WANG Xianbin, XU Sheng, CHEN Jianfa, et al. Composition and helium isotopic characters of natural gas in Tengchong volcanic hot spring[J]. Chinese Science Bulletin, 1993, 38(9):814-817.
16 上官志冠, 白春华, 孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学:地球科学, 2000, 30(4):407-414.
SHANGGUAN Zhiguan, BAI Chunhua, SUN Mingliang. Mantle derived magmatic gas releasing features at the Rehai area, Tengchong county, Yunnan Province, China[J]. Science China Earth Sciences, 2000, 30(4):407-414.
17 上官志冠, 霍卫国. 腾冲热海地热区逸出 H2的δD值及其成因[J]. 科学通报, 2001, 46(15):1316-1320.
SHANGGUAN Zhiguan, HUO Weiguo. δD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin[J]. Chinese Science Bulletin, 2001, 46(15):1316-1320.
18 SHANGGUAN Zhiguan, HUO Weiguo. δD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin[J]. Chinese Science Bulletin, 2002, 47(2):148-150.
19 高清武. 长白山天池火山水热活动及气体释放特征[J]. 地球学报, 2004, 25(3):345-350.
GAO Qingwu. Volcanic hydrothermal activities and gas-releasing characteristics of the Tianchi lake region, Changbai mountains[J]. Acta Geoscientica Sinica, 2004, 25(3):345-350.
20 高清武, 李霓. 腾冲和五大连池火山区流体地球化学特征及成因探讨[J]. 地质论评, 1999, 45(4):345-351.
GAO Qingwu, LI Ni. A discussion on fluid geochemistry and origin of the Tengchong and Wudalianchi volcanic areas[J]. Geological Review, 1999, 45(4):345-351.
21 杨晓勇, 刘德良, 陶士振. 中国东部典型地幔岩中包裹体成分研究及意义[J]. 石油学报, 1999, 20(1):19-23.
YANG Xiaoyong, LIU Deliang, TAO Shizhen. Compositions and implications of inclusions in the typical mantle rocks from East China[J]. Acta Petrolei Sinica, 1999, 20(1):19-23.
22 张铭杰, 王先彬, 李立武, 等. 幔源矿物中H2赋存状态的初步研究[J]. 地质学报, 2002, 76(1):39-44.
ZHANG Mingjie, WANG Xianbin, LI Liwu, et al. Mode of occurrence of H2 in mantle-derived minerals[J]. Acta Geologica Sinica, 2002, 76(1):39-44.
23 ZHANG M J, HU P Q, WANG X B, et al. The fluid compositions of lherzolite xenoliths in Eastern China and Western American[C]//Goldschmidt Conference Abstracts 2005. Amsterdam:Elsevier, 2005:A146.
24 陶明信, 徐永昌, 史宝光, 等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学:地球科学, 2005, 35(5):441-451.
TAO Mingxin, XU Yongchang, SHI Baoguang, et al. Mantle degassing and deep structure characters of different kinds of fracture, China[J]. Science China Earth Sciences, 2005, 35(5):441-451.
25 李秀梅, 刘映辉, 温景萍. 楚雄盆地乌龙1井天然气的地球化学特征和地质意义[J]. 天然气工业, 2002, 22(5):16-19.
LI Xiumei, LIU Yinghui, WEN Jingping. Geochemical characteristics of the natural gas from Well Wulong-1, Chuxiong Basin, and its geological significance[J]. Natural Gas Industry, 2002, 22(5):16-19.
26 刘国勇, 张刘平, 杨振平. 天然气中氢气的地化特征及油气成藏效应[J]. 天然气工业, 2004, 24(11):31-33.
LIU Guoyong, ZHANG Liuping, YANG Zhenping. Geochemical characteristics of hydrogen in natural gas and its reservoiring effect[J]. Natural Gas Industry, 2004, 24(11):31-33.
27 金之钧, 胡文瑄, 张刘平, 等. 深部流体活动及油气成藏效应[M]. 北京: 科学出版社, 2007:1-230.
JIN Zhijun, HU Wenxuan, ZHANG Liuping, et al. Deep fluid activity and its effects on oil and gas accumulation[M]. Beijing:Science Press, 2007:1-230.
28 孟庆强, 金之钧, 刘文汇, 等. 天然气中伴生氢气的资源意义及其分布[J]. 石油实验地质, 2014, 36(6):712-717, 724.
MENG Qingqiang, JIN Zhijun, LIU Wenhui, et al. Distribution and genesis of hydrogen gas in natural gas[J]. Petroleum Geology and Experiment, 2014, 36(6):712-717, 724.
29 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2):208-216.
MENG Qingqiang, JIN Zhijun, SUN Dongsheng, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology and Experiment, 2021, 43(2):208-216.
30 ELLIS G S. Understanding the potential for geologic hydrogen resources[EB/OL]. [2024-06-07]. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review23/arpae005_ellis_2023_o-pdf.pdf?Status=Master.
31 ZGONNIK V. The occurrence and geoscience of natural hydrogen:A comprehensive review[J]. Earth-Science Reviews, 2020, 203:103140.
32 NEWCOMBE R B. Natural gas fields of Michigan[C]//LEY H A. Geology of Natural Gas. Tulsa:American Association of Petroleum Geologists, 1935:787-812.
33 WOOLNOUGH W G. Natural gas in Australia and New Guinea[J]. AAPG Bulletin, 1934, 18(2):226-242.
34 BOHDANOWICZ C. Natural gas occurrences in Russia (U.S.S.R.)[J]. AAPG Bulletin, 1934, 18(6):746-759.
35 KRYVDIK S G, NIVIN V A, KUL’CHITSKAYA A A, et al. Hydrocarbons and other volatile components in alkaline rocks from the Ukrainian shield and Kola Peninsula[J]. Geochemistry International, 2007, 45(3):270-294.
36 ABRAJANO T A, STURCHIO N C, BOHLKE J K, et al. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines:Deep or shallow origin?[J]. Chemical Geology, 1988, 71(1/3):211-222.
37 NEAL C, STANGER G. Hydrogen generation from mantle source rocks in Oman[J]. Earth and Planetary Science Letters, 1983, 66:315-320.
38 SANO Y, URABE A, WAKITA H, et al. Origin of hydrogen-nitrogen gas seeps, Oman[J]. Applied Geochemistry, 1993, 8(1):1-8.
39 LYON G L, HULSTON J R. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases[J]. Geochimica et Cosmochimica Acta, 1984, 48(6):1161-1171.
40 JEFFREY A W A, KAPLAN I R. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden[J]. Chemical Geology, 1988, 71(1/3):237-255.
41 GOEBEL E D, COVENEY R M, Jr, ANGINO E E, et al. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas[J]. AAPG Bulletin, 1983, 67(8):1324.
42 GOEBEL E D, COVENEY R M, ANGINO E E, et al. Geology, composition, isotopes of naturally occurring H2/N2 rich gas from wells near Junction City, Kansas[J]. Oil & Gas Journal, 1984, 82(19):215-222.
43 ANGINO E E, COVENEY R M. Hydrogen and nitrogen-origin, distribution, and abundance[J]. Oil & Gas Journal, 1984, 82(3):142-146.
44 COVENEY R M, Jr, GOEBEL E D, ZELLER E J, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bulletin, 1987, 71(1):39-48.
45 MARTY B, GUNNLAUGSSON E, JAMBON A, et al. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland[J]. Chemical Geology, 1991, 91(3):207-225.
46 NEWELL K D, DOVETON J H, MERRIAM D F, et al. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in northeastern Kansas[J]. Natural Resources Research, 2007, 16(3):277-292.
47 ETIOPE G, SCHOELL M, HOSGÖRMEZ H. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey):Understanding gas exhalation from low temperature serpentinization and implications for Mars[J]. Earth and Planetary Science Letters, 2011, 310(1/2):96-104.
48 VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes:Evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223:437-461.
49 LOLLAR B S, ONSTOTT T C, LACRAMPE-COULOUME G, et al. The contribution of the Precambrian continental lithosphere to global H2 production[J]. Nature, 2014, 516(7531):379-382.
50 TRUCHE L, DONZÉ F V, GOSKOLLI E, et al. A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite[J]. Science, 2024, 383(6683):618-621.
51 PRINZHOFER A, TAHARA CISSÉ C S, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42):19315-19326.
52 GUÉLARD J, BEAUMONT V, ROUCHON V, et al. Natural H2 in Kansas:Deep or shallow origin?[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(5):1841-1865.
53 孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质, 2022, 44(3):552-558.
MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. Petroleum Geology and Experiment, 2022, 44(3):552-558.
54 高金亮, 刘嘉麒, 郭正府, 等. 双辽新生代玄武岩及地幔捕虏体内流体的组成、碳同位素特征及其来源[J]. 岩石学报, 2017, 33(1):81-92.
GAO Jinliang, LIU Jiaqi, GUO Zhengfu, et al. Chemical and carbon isotopic compositions of volatiles in Shuangliao Cenozoic basalts and related mantle xenoliths:Implications for origins of volatiles[J]. Acta Petrologica Sinica, 2017, 33(1):81-92.
55 HAO Yinlei, PANG Zhonghe, TIAN Jiao, et al. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China[J]. Chemical Geology, 2020, 538:119477.
56 MENG Qingqiang, SUN Yuhua, TONG Jianyu, et al. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang Depression, Eastern China[J]. Acta Geologica Sinica(English Edition), 2015, 89(5):1616-1624.
57 金之钧, 杨雷, 曾溅辉, 等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发, 2002, 29(2):42-44.
JIN Zhijun, YANG Lei, ZENG Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying depression[J]. Petroleum Exploration and Development, 2002, 29(2):42-44.
58 HORSFIELD B, MAHLSTEDT N, WENIGER P, et al. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China[J]. International Journal of Hydrogen Energy, 2022, 47(38):16750-16774.
59 HAN Shuangbiao, XIANG Chaohan, DU Xin, et al. Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin, China:Insights from continental scientific drilling[J]. Petroleum Science, 2024, 21(2):741-751.
60 HAN Shuangbiao, TANG Zhiyuan, WANG Chengshan, et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China:new insights into deep Earth exploration[J]. Science Bulletin, 2022, 67(10):1003-1006.
61 韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9):1270-1284.
HAN Shuangbiao, TANG Zhiyuan, YANG Chunlong, et al. Genesis and energy significance of hydrogen in natural gas[J]. Natural Gas Geoscience, 2021, 32(9):1270-1284.
62 张水昌, 朱光有, 陈建平, 等. 四川盆地川东北部飞仙关组高含硫化氢大型气田群气源探讨[J]. 科学通报, 2007, 52(增刊1):86-94.
ZHANG Shuichang, ZHU Guangyou, CHEN Jianping, et al. The discussion on gas source of gas field group with high H2S content in Feixianguan Formation, northeastern Sichuan Basin[J]. Chinese Science Bulletin, 2007, 52(S1):86-94.
63 余川. 川东南地区下志留统页岩气成藏条件及资源潜力分析[D]. 成都: 西南石油大学, 2012.
YU Chuan. Analysis on accumulation conditions and resource potential of lower Silurian shale gas in southeastern Sichuan[D]. Chengdu:Southwest Petroleum University, 2012.
64 秦川, 余谦, 刘伟, 等. 黔北地区牛蹄塘组富有机质泥岩储层特征[J]. 西南石油大学学报(自然科学版), 2017, 39(4):13-24.
QIN Chuan, YU Qian, LIU Wei, et al. Reservoir characteristics of organic-rich mudstone of Niutitang Formation in northern Guizhou[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(4):13-24.
65 林良彪, 蔺宏斌, 侯明才, 等. 鄂尔多斯盆地苏里格气田上古生界天然气地球化学及成藏特征[J]. 沉积与特提斯地质, 2009, 29(2):77-82.
LIN Liangbiao, LIN Hongbin, HOU Mingcai, et al.
Geochemistry and accumulation of the Upper Palaeozoic natural gas in the Sulige Gas Field, Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(2):77-82.
66 李玉宏, 魏仙样, 卢进才, 等. 内蒙古自治区商都盆地新生界氢气成因[J]. 天然气工业, 2007, 27(9):28-30.
LI Yuhong, WEI Xianyang, LU Jincai, et al. Origin of Cenozoic hydrogen in Shangdu Basin, Inner Mongolia autonomous region[J]. Natural Gas Industry, 2007, 27(9):28-30.
67 周强, 江洪清, 梁汉东. 沁水盆地南部煤层气中氢气释放规律研究[J]. 天然气地球科学, 2006, 17(6):871-873.
ZHOU Qiang, JIANG Hongqing, LIANG Handong. Analysis of the hydrogen release from coalbed gas, southern Qinshui Basin[J]. Natural Gas Geoscience, 2006, 17(6):871-873.
68 秦建中. 中国烃源岩[M]. 北京: 科学出版社, 2005:1-277.
QIN Jianzhong. Source rock of China[M]. Beijing:Science Press, 2005:1-277.
69 LI Xiaoqiang, KROOSS B M, WENIGER P, et al. Liberation of molecular hydrogen (H2) and methane (CH4) during non-isothermal pyrolysis of shales and coals:Systematics and quantification[J]. International Journal of Coal Geology, 2015, 137:152-164.
70 LI Xiaoqiang, KROOSS B M, WENIGER P, et al. Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126:275-287.
71 帅燕华, 张水昌, 苏爱国, 等. 柴达木盆地三湖地区产甲烷作用仍在强烈进行的地球化学证据[J]. 中国科学:地球科学, 2009, 39(6):734-740.
SHUAI Yanhua, ZHANG Shuichang, SU Aiguo, et al. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Science China Earth Sciences, 2009, 39(6):734-740.
72 肖栋, 元雪芳, 段月岚, 等. 寺河矿15号煤层中产氢产乙酸微生物的富集和群落结构研究[J]. 中国煤炭, 2020, 46(12):95-104.
XIAO Dong, YUAN Xuefang, DUAN Yuelan, et al. Research on enrichment and community structure of hydrogen and acetic acid producing microorganisms in Sihe No.15 coal seam[J]. China Coal, 2020, 46(12):95-104.
73 KLEIN F, TARNAS J D, BACH W. Abiotic sources of molecular hydrogen on earth[J]. Elements, 2020, 16(1):19-24.
74 SUGISAKI R, IDO M, TAKEDA H, et al. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. The Journal of Geology, 1983, 91(3):239-258.
75 KITA I, MATSUO S, WAKITA H, et al. D/H ratios of H2 in soil gases as an indicator of fault movements[J]. Geochemical Journal, 1980, 14(6):317-320.
76 MAYHEW L E, ELLISON E T, MCCOLLOM T M, et al. Hydrogen generation from low-temperature water-rock reactions[J]. Nature Geoscience, 2013, 6(6):478-484.
77 NEUBECK A, DUC N T, BASTVIKEN D, et al. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 ℃[J]. Geochemical Transactions, 2011, 12(1):6.
78 KLEIN F, BACH W, JÖNS N, et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2009, 73(22):6868-6893.
79 HYNDMAN R D, PEACOCK S M. Serpentinization of the forearc mantle[J]. Earth and Planetary Science Letters, 2003, 212(3/4):417-432.
80 章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4):1063-1080.
ZHANG Yuzhen, JIANG Zhaoxia, LI Sanzhong, et al. The process of oceanic peridotite serpentinization:From seafloor hydration to subduction dehydration[J]. Acta Petrologica Sinica, 2022, 38(4):1063-1080.
81 DENG Jianghong, HE Yongsheng, ZARTMAN R E, et al. Large iron isotope fractionation during mantle wedge serpentinization:Implications for iron isotopes of arc magmas[J]. Earth and Planetary Science Letters, 2022, 583:117423.
82 LI Yinchuan, WEI Haizhen, PALMER M R, et al. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes[J]. Chemical Geology, 2022, 609:121047.
83 DZAUGIS M E, SPIVACK A J, DUNLEA A G, et al. Radiolytic hydrogen production in the subseafloor basaltic aquifer[J]. Frontiers in Microbiology, 2016, 7:76.
84 LIPPMANN J, STUTE M, TORGERSEN T, et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa[J]. Geochimica et Cosmochimica Acta, 2003, 67(23):4597-4619.
85 LIN H T, COWEN J P, OLSON E J, et al. Dissolved hydrogen and methane in the oceanic basaltic biosphere[J]. Earth and Planetary Science Letters, 2014, 405:62-73.
86 WILLIAMS Q, HEMLEY R J. Hydrogen in the deep earth[J]. Annual Review of Earth and Planetary Sciences, 2001, 29:365-418.
87 KARATO S. The role of hydrogen in the electrical conductivity of the upper mantle[J]. Nature, 1990, 347(6290):272-273.
88 SCHMANDT B, JACOBSEN S D, BECKER T W, et al. Dehydration melting at the top of the lower mantle[J]. Science, 2014, 344(6189):1265-1268.
89 BINDI L, CÁMARA F, GAIN S E M, et al. Kishonite, VH2, and oreillyite, Cr2N, two new minerals from the corundum xenocrysts of Mt Carmel, Northern Israel[J]. Minerals, 2020, 10(12):1118.
90 CRUIKSHANK D P, MORRISON D, LENNON K. Volcanic gases:Hydrogen burning at Kilauea Volcano, Hawaii[J]. Science, 1973, 182(4109):277-279.
91 MOUSSALLAM Y, OPPENHEIMER C, AIUPPA A, et al. Hydrogen emissions from Erebus volcano, Antarctica[J]. Bulletin of Volcanology, 2012, 74(9):2109-2120.
92 SHERWOOD LOLLAR B, VOGLESONGER K, LIN L H, et al. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and Mars[J]. Astrobiology, 2007, 7(6):971-986.
93 MILKOV A V. Molecular hydrogen in surface and subsurface natural gases:Abundance, origins and ideas for deliberate exploration[J]. Earth-Science Reviews, 2022, 230:104063.
94 KAWKES H. Geothermal hydrogen[Z]. Mining Engineering, 1980:671-675.
95 秦胜飞, 周国晓, 李济远, 等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学, 2023, 34(11):1981-1992.
QIN Shengfei, ZHOU Guoxiao, LI Jiyuan, et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience, 2023, 34(11):1981-1992.
96 高宇, 刘全有, 吴小奇, 等. 鄂尔多斯盆地东胜与大牛地气田壳源氦气成藏差异性[J]. 天然气地球科学, 2023, 34(10):1790-1800.
GAO Yu, LIU Quanyou, WU Xiaoqi, et al. Research on the difference of crustal helium accumulation in Dongsheng and Daniudi gas fields, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(10):1790-1800.
97 JOHNSGARD S K. The fracture pattern of north-central Kansas and its relation to hydrogen soil gas anomalies over the Midcontinent Rift System:KGS Open File Report 8-25[R]. Lawrence:Kansas Geological Survey, 1988:112.
98 MAIGA O, DEVILLE E, LAVAL J, et al. Trapping processes of large volumes of natural hydrogen in the subsurface:The emblematic case of the Bourakebougou H2 field in Mali[J]. International Journal of Hydrogen Energy, 2024, 50(Part B):640-647.
99 KESHAVARZ A, ABID H, ALI M, et al. Hydrogen diffusion in coal:Implications for hydrogen geo-storage[J]. Journal of Colloid and Interface Science, 2022, 608(Part 2):1457-1462.
100 RAZA A, ARIF M, GLATZ G, et al. A holistic overview of underground hydrogen storage:Influencing factors, current understanding, and outlook[J]. Fuel, 2022, 330:125636.
101 ELLIS G, GELMAN S E. A preliminary model of global subsurface natural hydrogen resource potential[J]. Geological Society of America Abstracts with Programs, 2022, 54(5):
页码范围缺失.
102 BOREHAM C J, EDWARDS D S, CZADO K, et al. Hydrogen in Australian natural gas:Occurrences, sources and resources[J]. The APPEA Journal, 2021, 61:163-191.
103 苏宇通, 金之钧, 刘润超, 等. 非洲马里气田天然氢气勘探案例介绍及全球天然氢气勘探进展[J/OL]. 石油与天然气地质:1-19[2024-06-07]. http://kns.cnki.net/kcms/detail/11.4820.TE.20240301.1546.002.html.
SU Yutong, JIN Zhijun, LIU Runchao, et al. Natural hydrogen exploration:a case from Mali gas field in Africa and global progress[J/OL]. Oil & Gas Geology:1-19[2024-06-07]. http://kns.cnki.net/kcms/detail/11.4820.TE.20240301.1546.002.html.
104 窦立荣, 刘化清, 李博, 等. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2):1-14.
DOU Lirong, LIU Huaqing, LI Bo, et al. Global natural hydrogen exploration and development situation and prospects in China[J]. Lithologic Reservoirs, 2024, 36(2):1-14.
105 WANG Lu, JIN Zhijun, LIU Quanyou, et al. The occurrence pattern of natural hydrogen in the Songliao Basin, P.R. China:Insights on natural hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 50(Part B):261-275.
106 Hawaiian Volcano Observatory. Volcano Watch—flames from vents are hydrogen gas burning[EB/OL]. (2000-03-09)[2024-06-07]. https://www.usgs.gov/news/volcano-watch-flames-vents-are-hydrogen-gas-burning.
107 U.S. Department of Energy. ARPA-E funding opportunity announcements[EB/OL]. [2024-06-07]. https://arpa-e-foa.energy.gov/.
108 MIT. Extracting hydrogen from rocks[EB/OL]. (2024-04-08)[2024-06-07]. https://news.mit.edu/2024/iwnetim-abate-aims-extract-hydrogen-rocks-0408.
109 Geoscience Australia. Australia’s hydrogen production potential[EB/OL]. (2023-10-24)[2024-06-07]. https://www.ga.gov.au/scientific-topics/energy/resources/hydrogen/australias-hydrogen-production-potential.
110 韩啸. “天然氢” 的潜力[EB/OL]. (2024-01-15)[2024-06-07]. http://www.xinhuanet.com/globe/2024-01/15/c_1310759239.htm.
HAN Xiao. Potential of natural hydrogen[EB/OL]. (2024-01-15)[2024-06-07]. http://www.xinhuanet.com/globe/2024-01/15/c_1310759239.htm.
111 Helios Aragon. Monzon project[EB/OL]. [2024-06-07]. https://helios-aragon.com/aragon-project/.
112 COLLINS L. ‘Gas seeps’|Philippines opens auction for natural-hydrogen exploration rights across two zones near Manila[EB/OL]. (2024-02-26)[2024-06-07]. https://www.hydrogeninsight.com/innovation/gas-seeps-philippines-opens-auction-for-natural-hydrogen-exploration-rights-across-two-zones-near-manila/2-1-1603600.
113 国家自然科学基金委员会. 关于发布地球宜居性的深部驱动机制重大研究计划2024年度项目指南的通告[EB/OL]. (2024-04-12)[2024-06-07]. https://www.nsfc.gov.cn/publish/portal0/tab442/info92366.htm.
National Natural Science Foundation of China. Notice on the release of the 2024 project guidelines for the major research plan on the deep driving mechanism of the earth’s livability[EB/OL]. (2024-04-12)[2024-06-07]. https://www.nsfc.gov.cn/publish/portal0/tab442/info92366.htm.
114 DUGAMIN E, TRUCHE L, DONZÉ F V. Natural hydrogen exploration guide[Z]. Geonum Ed.:ISRN GEONUM-NST--2019-01--ENG, 16 pages, 2019.
115 PRINZHOFER A, RIGOLLET C, LEFEUVRE N, et al. Maricá (Brazil), the new natural hydrogen play which changes the paradigm of hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 62:91-98.
116 王海华, 薛迎喜, 张炜, 等. 全球天然氢勘查开发最新发展态势分析[J]. 中国地质调查, 2024, 11(3):1-8.
WANG Haihua, XUE Yingxi, ZHANG Wei, et al. Analysis of the latest development trend of global natural hydrogen exploration and development[J]. Geological Survey of China, 2024, 11(3):1-8.
117 JIN Zhijun, ZHANG Panpan, LIU Runchao, et al. Discovery of anomalous hydrogen leakage sites in the Sanshui Basin, South China[J]. Science Bulletin, 2024, 69(9):1217-1220.
118 PRATT W E. Toward a philosophy of oil-finding[J]. AAPG Bulletin, 1952, 36(12):2231-2236.
119 边瑞康, 孙川翔, 聂海宽, 等. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6):1515-1529.
BIAN Ruikang, SUN Chuanxiang, NIE Haikuan, et al. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6):1515-1529.
120 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6):1333-1349.
GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6):1333-1349.
121 赵晨旭, 李忠诚, 郭世超, 等. 松辽盆地南部长岭断陷青一段陆相页岩地球化学和沉积环境特征[J]. 特种油气藏, 2023, 30(6):55-61.
ZHAO Chenxu, LI Zhongcheng, GUO Shichao, et al. Characteristics of geochemistry and depositional environment of terrestrial shales in the first member of Qingshankou Formation of Changling fault depression in the southern Songliao Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(6):55-61.
122 韩载华, 刘华, 赵兰全, 等. 渤海湾盆地临南洼陷古近系沙河街组源-储组合类型与致密(低渗)砂岩油差异富集模式[J]. 石油与天然气地质, 2024, 45(3):722-738.
HAN Zaihua, LIU Hua, ZHAO Lanquan, et al. Source rock-reservoir assemblage types and differential oil enrichment model in tight (low-permeability) sandstone reservoirs in the Paleocene Shahejie Formation in the Linnan sub-sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2024, 45(3):722-738.
123 李宁, 李瑞磊, 苗贺, 等. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3):801-815.
LI Ning, LI Ruilei, MIAO He, et al. Stepwise identification of favorable facies belts and reservoir sweet spots of deep intermediate-basic volcanic rocks in the Songliao Basin[J]. Oil & Gas Geology, 2024, 45(3):801-815.
124 高涛, 曹宝军, 纪学雁, 等. 松辽盆地北部深层火山岩气藏勘探开发关键技术[J]. 大庆石油地质与开发, 2024, 43(3):172-182.
GAO Tao, CAO Baojun, JI Xueyan, et al. Key technologies for exploration and development of deep volcanic gas reservoirs in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(3):172-182.
125 左如斯, 曾翔, 曹忠祥, 等. 沉积岩中沸石类矿物成岩演化特征及其意义[J]. 新疆石油地质, 2023, 44(5):543-553.
ZUO Rusi, ZENG Xiang, CAO Zhongxiang, et al. Diagenetic evolution and its significance of zeolites in sedimentary rocks[J]. Xinjiang Petroleum Geology, 2023, 44(5):543-553.
126 王玉伟, 陈红汉, 曹自成, 等. 顺北地区流体活动对储层形成的控制作用[J]. 断块油气田, 2023, 30(1):44-51.
WANG Yuwei, CHEN Honghan, CAO Zicheng, et al. Controlling effects of fluid activity on reservoir formation in Shunbei area[J]. Fault-Block Oil and Gas Field, 2023, 30(1):44-51.
127 马代鑫, 任宪军, 赵密福, 等. 火山岩气藏勘探开发理论技术与实践——以松南断陷白垩系火山岩为例[J]. 油气藏评价与开发, 2024, 14(2):167-175.
MA Daixin, REN Xianjun, ZHAO Mifu, et al. Theories, technologies and practices of exploration and development of volcanic gas reservoirs:A case study of Cretaceous volcanic rocks in Songnan fault depression[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2):167-175.
128 凡玉梅, 凡哲元, 余强. 基于开发技术的稠油油藏未动用储量分类评价[J]. 石油地质与工程, 2023, 37(3):63-68.
FAN Yumei, FAN Zheyuan, YU Qiang. Classification and evaluation of undeveloped reserves in heavy oil reservoirs based on development technologies[J]. Petroleum Geology and Engineering, 2023, 37(3):63-68.
129 杜涛, 曲希玉, 王清斌, 等. 渤中19-6凝析气田孔店组砂砾岩储层压实成岩裂缝垂向演化特征[J]. 吉林大学学报(地球科学版), 2023, 53(1):17-29.
DU Tao, QU Xiyu, WANG Qingbin, et al. Vertical evolution characteristics of compaction diagenetic fractures in glutenite reservoirs of Kongdian Formation in Bozhong 19-6 condensate gas field[J]. Journal of Jilin University(Earth Science Edition), 2023, 53(1):17-29.
130 伦增珉, 王海涛, 张超, 等. 稠油油藏CO2与化学剂协同强化蒸汽驱机制[J]. 中国石油大学学报(自然科学版), 2023, 47(6):72-79.
LUN Zengmin, WANG Haitao, ZHANG Chao, et al. Mechanisms of synergistic enhancement of steam flooding by CO2 and chemical agents in heavy oil reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(6):72-79.