今年4月份,智行者宣布成功获得某头部车企量产定点合作,成为国内首家基于国产芯片的软硬件一体高阶自动驾驶系统方案供应商。
时隔半年,智行者发布首个基于国产芯片的“重感知、轻地图”的智能驾驶解决方案,标志着智行者在核心技术方向的又一次跃迁。
目前,智行者轻地图方案已在自研的域控制器A200上部署实现,得益于A200的量产质量保证,该方案已稳定运行半年。A200是智行者推出的以国产大算力SoC和安全MCU为核心芯片的高性价比域控制器,其中SoC主要负责感知模型神经网络的高效处理,MCU主要负责车辆控制、安全监控等。
感知方案基于BEV框架,利用BEV特征融合方法完成目标检测、车道线、可行驶区域分割等任务。在该感知框架中,智行者采用基于BEV Queries的方法,通过将BEV Query的空间位置投影到各个视角,通过注意力机制对相关视角信息进行融合得到该Query的特征。同时,针对感知系统的空间碎片化问题,设计了一个时序特征融合模块,将历史时刻的BEV特征和当前时刻的BEV特征融合得到最终时空特征。基于该融合特征,系统可实现人车目标检测、路面标线检测、可行驶区域分割、标志牌检测识别等多个感知任务。
在感知方案中,模型的工程化部署尤为重要。智行者充分利用国产芯片的强大计算能力与多核心架构,将计算任务进行适当的分配和并行处理,并在模型精度和效率之间进行平衡设计,以提高感知模型的计算效率。基于多级流水设计,对BEV感知模型的算子进行了DSP移植,将通用算力释放到模型的其他部分。这种优化设计可以提高感知模型的运行效率并降低计算延迟,使得模型能够在实时场景下快速响应和处理感知数据。目前基于BEV的感知框架能够以20Hz以上帧率稳定运行,保证了对环境的实时感知和准确判断。
基于BEV感知模型输出的动静态环境信息,智行者进一步融合了导航地图的先验信息,提出了能够端到端重构自动驾驶车辆周围道路环境拓扑信息的Topology Flow模型。该模型不仅以BEV感知模型输出的静态车道线和道路标识为输入,还融合了动态障碍物的行驶轨迹和标准导航地图的结构化信息,对感知盲区和更远范围的道路拓扑结构进行推理预测。
Topology Flow模型旨在输出下游规控模块所需要的地图环境信息,除车道中心线和车道拓扑关系,还输出各种地图的关键点信息,重构出常规高精地图中存在的各种虚拟道路和标识,实现从有图方案无缝衔接到轻地图方案。
以下为智行者轻地图方案高速NOA功能的实车路测展示。当前轻地图方案可以从容处理高速巡航、超车换道、上下匝道、智慧避让等功能。同时,对他车近距离切入、大曲率转弯等特殊场景也能够平稳应对。凭借技术的迭代与升级,为乘客提供媲美有图方案的乘车体验。
凭借领先的技术优化和丰富的工程经验,智行者可为客户提供模块化的全栈软硬件解决方案,包括:标准化的视觉感知、激光感知、匹配定位模型;面向智能驾驶的中间件软件,协助客户快速进行功能开发;车规级高性价比的域控制器;基于图形化的数据采集、数据挖掘、模型训练与测评的数据闭环平台等。