R语言基于Bootstrap的线性回归预测置信区间估计方法分析汽车制动距离|数据分享

科技   科技   2025-01-14 16:53   浙江  

阅读全文:http://tecdat.cn/?p=21625


我们知道参数的置信区间的计算,这些都服从一定的分布(t分布、正态分布),因此在标准误前乘以相应的t分值或Z分值。但如果我们找不到合适的分布时,就无法计算置信区间了吗?


幸运的是,有一种方法几乎可以用于计算各种参数的置信区间,这就是Bootstrap 法。

相关视频


本文使用BOOTSTRAP来获得预测的置信区间。我们将在线性回归基础上讨论汽车速度和制动距离数据查看文末了解数据获取方式

 > reg=lm(dist~speed,data=cars)
> points(x,predict(reg,newdata= data.frame(speed=x)))

这是一个单点预测。当我们想给预测一个置信区间时,预测的置信区间取决于参数估计误差。


点击标题查阅往期内容


R语言Bootstrap、百分位Bootstrap法抽样参数估计置信区间分析通勤时间和学生锻炼数据


左右滑动查看更多


01

02

03

04


预测置信区间

让我们从预测的置信区间开始

 > for(s in 1:500){
+ indice=sample(1:n,size=n,
+ replace=TRUE)
+ points(x,predict(reg,newdata=data.frame(speed=x)),pch=19,col="blue")


蓝色值是通过在我们的观测数据库中重新取样获得的可能预测值。值得注意的是,在残差正态性假设下(回归线的斜率和常数估计值),置信区间(90%)如下所示:

predict(reg,interval ="confidence",


在这里,我们可以比较500个生成数据集上的值分布,并将经验分位数与正态假设下的分位数进行比较,

> hist(Yx,proba=TRUE
> boxplot(Yx,horizontal=TRUE
> polygon(c( x ,rev(x I]))))


可以看出,经验分位数与正态假设下的分位数是可以比较的。

 > quantile(Yx,c(.05,.95))
5% 95%
58.63689 70.31281
+ level=.9,newdata=data.frame(speed=x))
fit lwr upr
1 65.00149 59.65934 70.34364


感兴趣变量的可能值

现在让我们看看另一种类型的置信区间,关于感兴趣变量的可能值。这一次,除了提取新样本和计算预测外,我们还将在每次绘制时添加噪声,以获得可能的值。

> for(s in 1:500){
+ indice=sample(1:n,size=n,
+ base=cars[indice,]
+ erreur=residuals(reg)
+ predict(reg,newdata=data.frame(speed=x))+E


在这里,我们可以(首先以图形方式)比较通过重新取样获得的值和在正态假设下获得的值,

> hist(Yx,proba=TRUE)
> boxplot(Yx) abline(v=U[2:3)
> polygon(c(D$x[I,rev(D$x[I])


数值上给出了以下比较

> quantile(Yx,c(.05,.95))
5% 95%
44.43468 96.01357
U=predict(reg,interval ="prediction"
fit lwr upr
1 67.63136 45.16967 90.09305


这一次,右侧有轻微的不对称。显然,我们不能假设高斯残差,因为有更大的正值,而不是负值。考虑到数据的性质,这是有意义的(制动距离不能是负数)。

然后开始讨论在供应中使用回归模型。为了获得具有独立性,有人认为必须使用增量付款的数据,而不是累计付款。

可以创建一个数据库,解释变量是行和列。

> base=data.frame(
+ y

> head(base,12)
y ai bj
1 3209 2000 0
2 3367 2001 0
3 3871 2002 0
4 4239 2003 0
5 4929 2004 0
6 5217 2005 0
7 1163 2000 1
8 1292 2001 1
9 1474 2002 1
10 1678 2003 1
11 1865 2004 1
12 NA 2005 1


然后,我们可以从基于对数增量付款数据的回归模型开始,该模型基于对数正态模型

 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.9471 0.1101 72.188 6.35e-15 ***
as.factor(ai)2001 0.1604 0.1109 1.447 0.17849
as.factor(ai)2002 0.2718 0.1208 2.250 0.04819 *
as.factor(ai)2003 0.5904 0.1342 4.399 0.00134 **
as.factor(ai)2004 0.5535 0.1562 3.543 0.00533 **
as.factor(ai)2005 0.6126 0.2070 2.959 0.01431 *
as.factor(bj)1 -0.9674 0.1109 -8.726 5.46e-06 ***
as.factor(bj)2 -4.2329 0.1208 -35.038 8.50e-12 ***
as.factor(bj)3 -5.0571 0.1342 -37.684 4.13e-12 ***
as.factor(bj)4 -5.9031 0.1562 -37.783 4.02e-12 ***
as.factor(bj)5 -4.9026 0.2070 -23.685 4.08e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1753 on 10 degrees of freedom
(15 observations deleted due to missingness)
Multiple R-squared: 0.9975, Adjusted R-squared: 0.9949
F-statistic: 391.7 on 10 and 10 DF, p-value: 1.338e-11

>
exp(predict(reg1,
+ newdata=base)+summary(reg1)$sigma^2/2)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2871.2 1091.3 41.7 18.3 7.8 21.3
[2,] 3370.8 1281.2 48.9 21.5 9.2 25.0
[3,] 3768.0 1432.1 54.7 24.0 10.3 28.0
[4,] 5181.5 1969.4 75.2 33.0 14.2 38.5
[5,] 4994.1 1898.1 72.5 31.8 13.6 37.1
[6,] 5297.8 2013.6 76.9 33.7 14.5 39.3

> sum(py[is.na(y)])
[1] 2481.857


这与链式梯度法的结果略有不同,但仍然具有可比性。我们也可以尝试泊松回归(用对数链接)

glm(y~
+ as.factor(ai)+
+ as.factor(bj),data=base,
+ family=poisson)


Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.05697 0.01551 519.426 < 2e-16 ***
as.factor(ai)2001 0.06440 0.02090 3.081 0.00206 **
as.factor(ai)2002 0.20242 0.02025 9.995 < 2e-16 ***
as.factor(ai)2003 0.31175 0.01980 15.744 < 2e-16 ***
as.factor(ai)2004 0.44407 0.01933 22.971 < 2e-16 ***
as.factor(ai)2005 0.50271 0.02079 24.179 < 2e-16 ***
as.factor(bj)1 -0.96513 0.01359 -70.994 < 2e-16 ***
as.factor(bj)2 -4.14853 0.06613 -62.729 < 2e-16 ***
as.factor(bj)3 -5.10499 0.12632 -40.413 < 2e-16 ***
as.factor(bj)4 -5.94962 0.24279 -24.505 < 2e-16 ***
as.factor(bj)5 -5.01244 0.21877 -22.912 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 46695.269 on 20 degrees of freedom
Residual deviance: 30.214 on 10 degrees of freedom
(15 observations deleted due to missingness)
AIC: 209.52

Number of Fisher Scoring iterations: 4

> predict(reg2,
newdata=base,type="response")

> sum(py2[is.na(y)])
[1] 2426.985


预测结果与链式梯度法得到的估计值吻合。克劳斯·施密特(Klaus Schmidt)和安吉拉·温什(Angela Wünsche)于1998年在链式梯度法、边际和最大似然估计中建立了与最小偏差方法的联系。




数据获取


在公众号后台回复“汽车数”,可免费获取完整数据。



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言基于Bootstrap的线性回归预测置信区间估计方法》。



本文中的汽车制动距离数据、代码分享到会员群,扫描下面二维码即可加群!


点击标题查阅往期内容

R语言参数自抽样法Bootstrap:估计MSE、经验功效、杰克刀Jackknife、非参数自抽样法可视化自测题
数据分享|R语言Bootstrap、百分位Bootstrap法抽样参数估计置信区间分析通勤时间和学生锻炼数据
R语言实现随机前沿分析SFA、数据包络分析DEA、自由处置包分析FDH和BOOTSTRAP方法
R语言GARCH模型对股市sp500收益率bootstrap、滚动估计预测VaR、拟合诊断和蒙特卡罗模拟可视化
R语言BOOTSTRAP(自举法,自抽样法)估计回归模型置信区间分析股票收益
R语言实现随机前沿分析SFA、数据包络分析DEA、自由处置包分析FDH和BOOTSTRAP方法
R语言Bootstrap的岭回归和自适应LASSO回归可视化
R语言基于Bootstrap的线性回归预测置信区间估计方法
R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间
R语言中回归模型预测的不同类型置信区间应用比较分析
R语言中固定与随机效应Meta分析 - 效率和置信区间覆盖
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
R语言分段线性回归分析预测车辆的制动距离
R语言时变面板平滑转换回归模型TV-PSTR分析债务水平对投资的影响
R语言stan进行基于贝叶斯推断的回归模型
R语言线性回归和时间序列分析北京房价影响因素可视化案例
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类
R语言实现CNN(卷积神经网络)模型进行回归数据分析
R语言中实现广义相加模型GAM和普通最小二乘(OLS)回归


拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章