Meta今天在Meta Connect2024大会上正式推出了 Llama 3.2 AI 大模型,其特点是开放和可定制,开发者可以根据其需求定制实现边缘AI革命。Llama 3.2 提供了多模态视觉和轻量级模型,代表了 Meta 在大型语言模型(LLMs)方面的最新进展,在各种使用案例中提供了更强大的功能和更广泛的适用性。
其中包括适合边缘设备的中小型视觉 LLMs (11B 和 90B),以及轻量级纯文本模型(1B 和 3B),此外提供预训练和指令微调(instruction-tuned)版本。
附上 4 个版本 AI 模型简介如下:
Llama 3.2 90B Vision(文本 + 图像输入):Meta 最先进的模型,是企业级应用的理想选择。该模型擅长常识、长文本生成、多语言翻译、编码、数学和高级推理。它还引入了图像推理功能,可以完成图像理解和视觉推理任务。该模型非常适合以下用例:图像标题、图像文本检索、视觉基础、视觉问题解答和视觉推理,以及文档视觉问题解答。
Llama 3.2 11B Vision(文本 + 图像输入):非常适合内容创建、对话式人工智能、语言理解和需要视觉推理的企业应用。该模型在文本摘要、情感分析、代码生成和执行指令方面表现出色,并增加了图像推理能力。该模型的用例与 90B 版本类似:图像标题、图像文本检索、视觉基础、视觉问题解答和视觉推理,以及文档视觉问题解答。
Llama 3.2 3B(文本输入):专为需要低延迟推理和有限计算资源的应用而设计。它擅长文本摘要、分类和语言翻译任务。该模型非常适合以下用例:移动人工智能写作助手和客户服务应用。
Llama 3.2 1B(文本输入):Llama 3.2 模型系列中最轻量级的模型,非常适合边缘设备和移动应用程序的检索和摘要。该模型非常适合以下用例:个人信息管理和多语言知识检索。
其中 Llama 3.2 1B 和 3B 模型支持 128K 标记的上下文长度,在边缘本地运行的设备用例(如摘要、指令跟踪和重写任务)中处于领先地位。这些模型在第一天就支持高通和联发科硬件,并针对 Arm 处理器进行了优化。
Llama 3.2 视觉模型在图像识别和一系列视觉理解任务上与领先的基础模型 Claude 3 Haiku 和 GPT4o-mini 相媲美。3B 模型在遵循指令、总结、快速重写和工具使用等任务上的表现优于 Gemma 2 2.6B 和 Phi 3.5-mini 模型,而 1B 模型与 Gemma 相媲美。
Llama-3.2-3B-Instruct:
import torch
from transformers import pipeline
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Llama-3.2-3B-Instruct')
pipe = pipeline(
"text-generation",
model=model_dir,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
Llama-3.2-11B-Vision-Instruct:
import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from modelscope import snapshot_download
model_id = "LLM-Research/Llama-3.2-11B-Vision-Instruct"
model_dir = snapshot_download(model_id, ignore_file_pattern=['*.pth'])
model = MllamaForConditionalGeneration.from_pretrained(
model_dir,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_dir)
url = "https://www.modelscope.cn/models/LLM-Research/Llama-3.2-11B-Vision/resolve/master/rabbit.jpg"
image = Image.open(requests.get(url, stream=True).raw)
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": "If I had to write a haiku for this one, it would be: "}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=30)
print(processor.decode(output[0]))
显存占用:
单模型GGUF文件下载
使用ModelScope命令行工具下载单个模型,本文使用Llama-3.2-3B-Instruct的GGUF格式:
modelscope download --model QuantFactory/Llama-3.2-3B-Instruct-GGUF Llama-3.2-3B-Instruct.Q5_K_M.gguf --local_dir ./
Linux环境使用
Liunx用户可使用魔搭镜像环境安装【推荐】:
https://www.modelscope.cn/models/modelscope/ollama-linux, 使用最新发布的Ollama 0.3.12版本
modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux --revision v0.3.12
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh
启动Ollama服务
ollama serve
创建ModelFile
复制模型路径,创建名为“Modelfile”的meta文件,其中设置template,使之支持function call,内容如下,其中FROM后面接的是上面下载的GGUF文件的路径
FROM ./Llama-3.2-3B.Q5_K_M.gguf
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
TEMPLATE """<|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
{{ if .System }}{{ .System }}
{{- end }}
{{- if .Tools }}When you receive a tool call response, use the output to format an answer to the orginal user question.
You are a helpful assistant with tool calling capabilities.
{{- end }}<|eot_id|>
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 }}
{{- if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>
{{- if and $.Tools $last }}
Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.
Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.
{{ range $.Tools }}
{{- . }}
{{ end }}
{{ .Content }}<|eot_id|>
{{- else }}
{{ .Content }}<|eot_id|>
{{- end }}{{ if $last }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}
{{- else if eq .Role "assistant" }}<|start_header_id|>assistant<|end_header_id|>
{{- if .ToolCalls }}
{{ range .ToolCalls }}
{"name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}}{{ end }}
{{- else }}
{{ .Content }}
{{- end }}{{ if not $last }}<|eot_id|>{{ end }}
{{- else if eq .Role "tool" }}<|start_header_id|>ipython<|end_header_id|>
{{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}
{{- end }}
{{- end }}"""
创建自定义模型
使用ollama create命令创建自定义模型
ollama create myllama3.2-3b --file ./Modelfile
运行模型:
ollama run myllama3.2-3b
进行对话:
>>> hello, what can you can me about yourself?
I'll do my best to give you an overview of who I am and what I can do.
**About My Capabilities:**
1. **Language Understanding:** I can comprehend natural language inputs, including grammar, syntax, and context.
2. **Knowledge Base:** I have been trained on a vast amount of text data from various sources, which enables me to provide
accurate and informative responses.
3. **Text Generation:** I can generate human-like text based on the input I receive, whether it's a question, prompt, or
topic.
**About My Limits:**
1. **Knowledge Limitations:** While I have been trained on a massive dataset, there may be topics or areas of knowledge where
my understanding is limited or outdated.
2. **Creative Thinking:** I can generate text and responses, but I'm not as good at creative thinking or original ideas like
humans are.
3. **Emotional Intelligence:** I don't possess emotions or empathy in the way humans do, which can limit my ability to
understand complex emotional situations.
**About My Purpose:**
1. **Assisting Humans:** My primary purpose is to assist and provide value to users by answering questions, generating text,
and completing tasks.
2. **Learning and Improvement:** Through interactions with users like you, I learn and improve my abilities to better serve
future users.
3. **Entertainment:** I can also be used for entertainment purposes, such as generating stories, poems, or even chatbot-style
conversations!
**About My Personality:**
1. **Neutral Tone:** I strive to maintain a neutral tone and avoid taking a biased stance on any topic.
2. **Professional Language:** I aim to communicate in a professional and respectful manner, avoiding sarcasm or humor that
might be misinterpreted.
3. **Helpful and Patient:** My goal is to provide helpful responses and answer questions to the best of my ability, without
getting frustrated or impatient.
That's me in a nutshell! What would you like to know more about?
我们使用ms-swift对llama3.2和llama3.2-vision进行微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型微调推理框架。
ms-swift开源地址:
https://github.com/modelscope/ms-swift
这里展示可运行的demo,自定义数据集可以查看这里:
https://swift.readthedocs.io/zh-cn/latest/Instruction/%E8%87%AA%E5%AE%9A%E4%B9%89%E4%B8%8E%E6%8B%93%E5%B1%95.html
在开始微调之前,请确保您的环境已准备妥当。
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .[llm]
Llama3.2
微调脚本:
# 单卡A10/3090可运行
CUDA_VISIBLE_DEVICES=0 swift sft \
--model_type llama3_2-1b-instruct \
--model_id_or_path LLM-Research/Llama-3.2-1B-Instruct \
--dataset jd-sentiment-zh \
--learning_rate 1e-4 \
--output_dir output \
--lora_target_modules ALL \
# Deepspeed-ZeRO2
NPROC_PER_NODE=4 CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type llama3_2-1b-instruct \
--model_id_or_path LLM-Research/Llama-3.2-1B-Instruct \
--dataset jd-sentiment-zh \
--learning_rate 1e-4 \
--output_dir output \
--lora_target_modules ALL \
--deepspeed default-zero2
微调后推理脚本如下,这里的ckpt_dir需要修改为训练生成的last_checkpoint文件夹。
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/llama3_2-1b-instruct/vx-xxx/checkpoint-xxx \
--load_dataset_config true --show_dataset_sample 10 \
--do_sample false
# merge-lora并使用推理
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/llama3_2-1b-instruct/vx-xxx/checkpoint-xxx \
--load_dataset_config true --show_dataset_sample 10 \
--merge_lora true --do-sample false
Llama3.2-Vision
我们使用Latex-OCR数据集:
https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR 进行微调。
微调脚本:
# 默认:微调 LLM & projector, 冻结 vision encoder
CUDA_VISIBLE_DEVICES=0 swift sft \
--model_type llama3_2-11b-vision-instruct \
--model_id_or_path LLM-Research/Llama-3.2-11B-Vision-Instruct \
--sft_type lora \
--dataset latex-ocr-print#5000
# Deepspeed ZeRO2
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \
--model_type llama3_2-11b-vision-instruct \
--model_id_or_path LLM-Research/Llama-3.2-11B-Vision-Instruct \
--sft_type lora \
--dataset latex-ocr-print#5000 \
--deepspeed default-zero2
训练显存占用:
如果要使用自定义数据集,只需按以下方式进行指定:
# val_dataset可选,如果不指定,则会从dataset中切出一部分数据集作为验证集
--dataset train.jsonl \
--val_dataset val.jsonl \
{"query": "<image>55555", "response": "66666", "images": ["image_path"]}
{"query": "<image><image>eeeee", "response": "fffff", "history": [], "images": ["image_path1", "image_path2"]}
{"query": "EEEEE", "response": "FFFFF", "history": [["query1", "response1"], ["query2", "response2"]]}
训练loss图:
微调后推理脚本如下,这里的ckpt_dir需要修改为训练生成的last_checkpoint文件夹。
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/llama3_2-11b-vision-instruct/vx-xxx/checkpoint-xxx \
--load_dataset_config true
# or merge-lora & infer
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/llama3_2-11b-vision-instruct/vx-xxx/checkpoint-xxx \
--load_dataset_config true --merge_lora true
微调后模型对验证集进行推理的结果:
点击阅读原文,跳转模型合集链接~