| | | | |
| | 本系统用于制备空间组实验所需的石蜡及冰冻切片,包含冰冻切片机(含钨钢刀)、半自动石蜡切片机及自动脱水系统、包埋系统。 | | |
| | 批量、全自动化的对高通量样本进行一致性免疫染色分析。 | | |
| | 在亚细胞级分辨率对组织切片进行高通量单细胞转录组分析。 | | |
| | | | |
| | 高通量脑肌电信号采集系统与分析系统可以对实验动物的脑电图(EEG)和肌电图(EMG)信号准确确定。该系统用于收集、处理和分析各种类型的脑电和肌电,并且能够同步来自第三方设备的实验事件信息,包括行为学、电学和光遗传刺激系统以及视频系统。数据采样频率最大可达3MHz/通道,最高支持72只动物脑电、肌电信号采集。需要性能指标: 1.总通道数量:不低于3*48个通道; 2.最高数据采样频率:不低于3MHz/通道; 3.每个通道的采样频率可以独立设定; 4.模拟信号输入范围:±5V或者±10(可通过软件调整); 5.数字信号输入/输出:各不低于16个通道; 预期功能和使用方向:用于采集、记录、处理和分析各种类型的实验动物脑电和肌电,在睡眠研究、癫痫研究、皮层记录、场电位记录、认知研究等神经科学领域有广泛的应用。 | | |
| | 功能需求:主要用于HE染色、化学染色等组织病理、药理切片、荧光染色切片等多种类型样品进行从亚微米级至厘米级以上分辨率的跨尺度成像。能够在跨尺度多模式批量图像采集与解析工作站上进行成像,既能够得到高精度的图像细节,又能够对整体标本进行全局观察。本套设备需要有光学层切成像模式:能搭配高对比光学层切成像模式,实现类共聚焦成像效果,成像XY分辨率可达200nm,可同时兼顾切片扫描仪的大视野及快速,成像时间平均需共聚焦扫描的 1/10。配件要求:全电动部件,物镜转换、扫描视野移动、Z轴调节,适配器切换、观察方式切换全部可以一键操作,硬件具备较高的响应速度。可为玻片扫描优化光路,缩短光程,可以更高效快速进行光学成像。 | | |
| | 功能需求:可以记录活细胞、活组织动态情况下相关形态、活性的变化,进行实时3D结构成像,能记录样品在最真实的动态、三维、多标记条件下的生化反应。用于高速活细胞成像和大尺度成像,能进行单分子荧光原位杂交,可在空间环境中创建整个组织的综合基因表达图谱。 参数需求:XY成像分辨率可达到110nm。2084X2084全分辨率情况下能达到200f/s。时间分辨率≤1ms, 时间精度≤0.01ms。 能够不损坏细胞、具有高信噪比、高时间分辨率、高空间分辨率的成像设备。可以采用面阵式多点扫描的方式,加快成像速度,并采用灵敏度极高的EMCCD(或sCMOS)做探测器,可在极低的激光照射强度下采集到高品质图像,并且系统的光漂白和光毒性极低,能达到亚细胞器结构的精细观察,可以满足超高分辨活细胞长时间的观察。 | | |
| | 功能需求:采集活体动物的颅内电生理信号,包括单神经元电活动(Spike)信号,场电位(LFP)信号等,同时可对试验动物特定区域给予电刺激。可同时进行单神经元级别的信号记录,并给予电刺激或者其他类型的刺激,可实现记录与刺激的闭环研究。可将多脑区的动作电位信号(spikes),场电位信号(Local Field Potential)等神经数据与动物精细行为的坐标数据同步录制在一个数据文件中,达到单个动作电位信号能够与宏观和精细行为坐标数据一对一的对应,进行多脑区间的实时闭环反馈及干预,实现对脑网络机制的研究。 参数需求:可实时采集头部固定或清醒自由活动动物神经元的胞外动作电位信号(Spikes)、场电位信号(Local Field Potential)、和原始信号(RAW)。具备1000以上的采集通道,无需外接刺激器,能实现至少256 通道及以下全通道采集和刺激。 | | |
| | 要求基于 Next GEM 微流控技术,支持单细胞转录组,免疫组,蛋白质,表观组,CRISPR 功能筛选及靶向测序方案,能够兼容细胞及细胞核样,兼容新鲜组织样本及石蜡包埋样本;针对 V(D)J 分析,可检出单个细胞的配对的 TCR/BCR 双链全长 V(D)J 序列。 | | |
| | 要求能够实现实现悬浮细胞流式成像和多色成像,能够量化细胞形态学、细 胞机构和亚细胞荧光信号分布的成像信息.,实现操作简便,使用普通流式抗体即可。 | | |
| | 用于人体肠道菌的高通量分离培养平台:要求配置自动化涂布装置、单菌落识别系统、培养基设计软件并支持恒温培养等。 | | |
| | 高性能高通量SPR分子互作仪:要求检测灵敏度高,折射率范围:1.33-1.40,检测动态范围1-70000RU, 对有机化合物分子的检测灵敏度可以无分子量限制的检测。 | | |
| | 灵长类跨物种高分辨率超声成像系统:要求满足高达30um分辨率,能够在活体状态下检测包括:人、猴子、猪、狗,甚至大小鼠等在内的多个物种的各个器官表型检测研究,保证研究结果的准确性、一致性和可转化性。 | | |
| | 拟采购一套高速芯片测试系统,需求主要包括:高速采样示波器需具备高带宽和高采样率,以捕捉和分析高速电子信号。需要具备多通道支持和深存储能力,以满足复杂信号测试的需求。高速矢量信号发生器及频率扩展模块用于生成精确的射频、微波和毫米波信号。需求包括宽频率范围、高输出功率、多种调制格式以及脉冲生成能力。频率扩展模块需要能够将信号发生器的频率范围扩展到太赫兹频段。信号分析仪及频谱扩展模块:用于测量和分析复杂信号的频谱内容。需求包括宽动态范围、高分辨率、快速扫描速度以及多种测量功能。频谱扩展模块需要能够将信号分析仪的频率范围扩展到太赫兹频段。 | | |
| | 复旦大学多尺度研究院冷冻电镜平台有5套赛默飞冷冻电镜。本次采购该5套仪器的维保服务,确保仪器发生故障时能够得到及时的维修保养,保证测试效率。 | | |
| | | | |
| | | | |
| | 拟购仪器超高分辨质谱分析系统 1 液相分离部分 1.1 液相色谱高压泵 1.1.1 压力范围:最高不低于120 MPa 1.1.2 可设定流速范围:1nL/min–100μL/min,1nL增量 1.1.3 泵溶剂通道:2个 1.2 液相自动进样器 1.2.1 进样体积范围:满足0.01–25μL, 步进0.01μL 1.2.2 自动进样器控温:满足5–40°C 1.2 液相柱温箱 1.3.1 控温范围:最高不低于60°C 1.3.2 控温精度:±0.1 K 2 质谱检测器部分 2.1 质谱离子源部分- 2.1.1离子源包含可加热电喷雾离子源 2.1.2离子源包含纳升电喷雾离子源 2.1.3质谱可以直接进样 2.1.4 质谱软件须具备实时监控并反馈喷雾稳定性功能 2.1.5 离子源腔体具有观察窗口 2.2 离子传输系统 2.2.1 须配置离子传输管 2.2.2 须配置电动离子漏斗 2.2.3 须配置主动离子束传输组件 2.3 第一个质量分析器 2.3.1 分辨率最高可到0.4Da;可选择隔离窗口宽度满足0.4Da-1200Da,MS/MS母离子选择质量范围满足40-2500m/z 2.4 第二个质量分析器 2.4.1质量范围满足:40-6000 m/z 2.4.2分辨率:最高不低于300,000 FWHM ( m/z≤200) 2.4.3谱内动态范围:>5,000 2.4.4 采集速率:最高不低于30 Hz 2.4.5 质量准确度:外标法≤3ppm RMS;内标法≤1ppm RMS 2.4.6 灵敏度指标 2.4.6.1 MS/MS灵敏度:柱上50 fg 利血平进样,S/N 100:1 2.4.6.2选择离子扫描SIM灵敏度:柱上50 fg 利血平进样,S/N 150:1 2.4.7 质量轴稳定 2.4.8 扫描模式至少包括高分辨全扫描、高分辨选择离子扫描、 高分辨正负离子切换扫描、高分辨数据依赖子离子扫描、高分辨数据非依赖扫描 2.5 第三个质量分析器 2.5.1 质量范围:至少满足100-6000 m/z 2.5.2 分辨率:最高不低于80,000 FWHM(@524 m/z) 2.5.3 采集速度:最高不低于 200 Hz 2.5.4 质量精度:使用 FlexMix 校正液测量,外标校正24小时内 <5 ppm RMS 2.5.5 动态范围:单张质谱谱图内>1,000。 | | |
| | 随着国家集成电路学院项目的推动,我们设计了一款先进的chiplet存算一体人工智能加速器芯片。这款芯片采用28nm CMOS工艺技术,旨在通过流片制造和验证来实现高性能的人工智能计算。项目的核心目标是完成芯片后端设计支持并确保芯片的总流片面积不低于25平方毫米,并提供完整晶圆。这款芯片的设计融合了多个异构的芯片单元,通过创新的存算一体架构以实现高效的数据存取和计算能力,满足对大规模数据处理和存储的需求。 | | |
| | 本项目要求对130例人体样本、使用第三代高通量测序平台PacBio Revio进行测序,每个样本最低测序数据量>90Gb,HiFi reads N50>17kb,碱基平均准确率Q33以上。 | | |
| | 设备主要功能必须包含:实现模式生物如斑马鱼、小鼠等的直接水介质浸入式活体深层信号观察,以及生物组织切片的高清晰成像,激发波长至少包含405nm等固体激光器和一个可调波长的脉冲激光器,可以进行不同颜色通道成像,利用电动载物台可以进行大图自动拼接扫描,并包含透射光成像功能。 设备必须配备具有1000万以上像素彩色相机的荧光体式显微镜用于样品制备和大范围明场成像,具有电动变倍功能,可以用于模式生物大视野整体观察,以及镜下立体取样;配备气浮式防震台用于稳定成像;配备高级电脑工作站用于控制成像设备及后期图像分析。 | | |
| | 系统包括一定数量的集中式多层层双排养殖单元,集中式单层单排养殖单元,独立式多层单排斑马鱼养殖单元,循环控制单元,净水单元,幼鱼养殖架,孵化器,操作台,配鱼架,不锈钢洗池,塑料洗池等,以满足斑马鱼养殖繁育要求。系统对斑马鱼养殖繁育所需的水环境须进行过滤、杀菌,并自动调节 PH、电导率等。设备与水接触的材料需选用洁净材料,以减少材料析出的毒性物质在生物体内的蓄集。 | | |
| | 该组显微镜包括以下各类显微镜总计10台:1)变倍比不低于20:1、包含不低于420万像素冷却相机用于荧光成像的高清电动体式显微镜。2)变倍比不低于16:1的全复消色差荧光体式显微镜。3)无级连续变倍比不低于8:1的全复消色差体式显微镜。4)无级连续变倍比不低于9:1、摇摆臂可360度旋转的全复消色差体式解剖显微镜等。 | | |
| | 面向集成芯片微系统的物理仿真和智能设计的算力需求,建设算力集群,包括AI算力服务器,CPU服务器,并行文件存储,集群管理软件及基础仿真软件。 | | |
| | 为支撑人工智能产教融合创新平台,拟建设算力集群的专用设备,包含FPGA硬件仿真验证平台、设计与分析开发平台。1套FPGA硬件仿真验证平台,用于对对大规模ASIC设计进行快速硬件仿真验证,提供 1、2 或 4 个 FPGA 模型的任意组合等。3套FPGA设计与分析开发平台,用于设计、EDA算法的测试和时序分析,板卡具有丰富的可扩展的外部接口,支持高性能串行收发器应用,支持PCIe、DDR3等高速接口。 | | |
| | 为支撑人工智能产教融合创新平台,拟建设算力集群的专用设备,包含智能机器人、虚拟现实设备。用来测试和验证类脑智能算法,包含室内外轮式移动机器人、双足人形机器人、机械臂、无人机、虚拟现实头显等10台以上设备。 | | |
| | 为支撑人工智能产教融合创新平台,拟建设算力集群的专用设备,包含1套材料谱学系统。用于材料的研究与教学,优化材料合成,具备成像系统、X射线平板探测器、程控和成像软件等功能。 | | |
| | 为支撑人工智能产教融合创新平台,拟建设算力集群的专用设备,包含1套基于大模型EDA电路设计仿真原型验证系统。包括原型验证的多卡FPGA系统,原型验证的系统划分及编译软件,原型验证的调试软件等。最大支持容量实测最高160片VU19P FPGA;单平台支持FPGA数量4片。 | | |
| | 基于临床前小动物分子水平的磁共振成像系统,进行动物疾病模型的磁共振波谱和成像检测, 覆盖结构,灌注,心血管成像等应用。采购标的需满足的质量、服务、安全、时限:具有最新核磁共振成像和波谱实验功能,应含2个射频发射通道、4个接收通道、该设备要配备小动物核磁共振实验所需必要附件、具有获得最佳三维图谱的数据处理速度与存贮能力。提供1年以上原厂质保,提供必要的培训,本年度完成采购。 | | |
| | 采购标的需实现的主要功能或者目标: 基于连续色散技术的全光谱流式细胞分析仪,对每个细胞进行多参数的采集和分析,构建高精度的单细胞荧光光谱数据,精细鉴定细胞亚群及分析不同细胞亚群功能。采购标的需满足的质量、服务、安全、时限:配置70个及以上检测器,实现超过30色荧光颜色的同时检测,并且无需传统的补偿调试,通过自体荧光扣除,用于混合细胞样品中的单个细胞群,实现特定目标细胞群的更高分辨率。提供1年以上原厂质保,提供必要的培训,本年度完成采购。 | | |
| | 拟采购动态蒸汽吸附仪及配套设备一套。该设备通过实时测量在不同浓度的蒸气环境中样品的质量变化,以表征样品吸附水蒸气和二氧化碳的速度和数量,可以研究材料的吸附量、吸附选择性、吸附动力学、吸附循环稳定性、化学和热稳定、再生能力等等。 | | |
| | 包含小鼠IVC笼盒3万套,笼架250个,主机150台及相关附件。小鼠IVC笼架10层*8列,单面80笼位,双面160笼位;框架应为SUS 304不锈钢材质,钢管壁厚度不小于1.5mm,可拆卸,可整体高温高压灭菌;笼架笼盒应根据自动饮水厂家提出的要求预留安装固定饮水管、饮水嘴的配件;笼盒长宽高规格≥330x200x180mm,饲养小鼠不少于5只,各项指标应满足《GB14925实验动物环境及设施》相关要求,饮水瓶内置式,笼盒开有自动饮水孔,包含塑料底盒、盒盖、不锈钢网盖、标签牌;底盒与盒盖之间用硅胶圈密封,须保持良好的气密性。 | | |
| | 数量:10台 功能:具备高温高压灭菌功能,用于耐高温高压物品灭菌传入屏障内。灭菌器腔体有效容积:2台≥2500L,设备最大外形尺寸(L×W×H)≤2550mm×1950 mm×2300 mm, ;8台≥1350L,外形尺寸(深*宽*高)≤1850×1650×2500mm,。设备主体结构:环形加强筋结构,内壳采用316L不锈钢材质,夹套、门板、门档条采用304不锈钢;主体设计寿命≥10年;设计压力:≥0.3Mpa;工作温度:≥134℃。 | | |
| | 扫描电子显微镜(SEM)是一种介于透射电子显微镜和光学显微镜之间的一种观察手段。其利用聚焦的很窄的高能电子束来扫描样品,通过光束与物质间的相互作用,来激发各种物理信息,对这些信息收集、放大、再成像以达到对物质微观形貌表征的目的。本项目需求的扫描电子显微镜主要功能必须包含:实现对半导体样品,材料样品及不导电聚合物等各种样品进行超高分辨形貌表征,对于不导电样品可以实现不喷金低电压高分辨成像,低电压二次电子分辨率≤0.8nm@1kV,同时设备必须具备元素成份的点扫描和面扫描分析功能,所配备能谱窗口面积不小于100mm2。配备主动式减震台和主动式消磁器以满足高分辨拍摄场地要求。 | | |
| | 拟采购1套高端磁共振,用于放射学影像检查,对肿瘤疾病进行诊断和病症的评估等。设备到货后,需在规定期限内完成设备安装,对设备使用进行现场培训,确保设备的正常操作和使用。要求供应商提供终身维修服务,负责提供技术支持和软件升级服务。 | | |
| | 此次拟购置6套电子胃肠镜系统,用于更新原有老设备。 | | |
| | 此次拟购置3套4K腹腔镜系统,用于更新原有老设备。 | | |
| | 此次拟购置1套4K荧光内窥镜系统,用于更新原有老设备。 | | |
| | 此次拟购置3套3D腹腔镜系统,用于更新原有老设备。 | | |
| | 此次拟购置2套三维电生理导航系统,用于更新原有老设备。 | | |
| | 此次拟购置1套皮秒激光治疗仪,用于更新原有老设备。 | | |
| | | | |
| | 此次拟购置3套体外循环机(含离心泵),用于更新原有老设备。 | | |
| | | | |
| | 此次拟购置1套彩色多普勒超声诊断仪,用于更新原有老设备。 | | |
| | 此次拟购置7套彩色多普勒超声诊断仪,用于更新原有老设备。 | | |
| | 此次拟购置1套彩色多普勒超声诊断仪,用于更新原有老设备。 | | |
| | 此次拟购置1套彩色多普勒超声诊断仪,用于更新原有老设备。 | | |
| | 此次拟购置1套肝功能剪切波量化超声诊断仪,用于更新原有老设备。 | | |
| | 此次拟购置1套心脏彩色超声诊断系统,用于更新原有老设备。 | | |
| | 此次拟购置6套彩色多普勒超声诊断仪,用于更新原有老设备。 | | |
| 复旦大学附属中山医院单光子发射断层显影/X线计算机体层成像仪(SPECT/CT) | 此次拟购置1套单光子发射断层显影/X线计算机体层成像仪(SPECT/CT)。 | | |
| | 此次拟购置1套医用血管造影X射线机,用于更新原有老设备。 | | |
| 复旦大学附属中山医院正电子发射型计算机断层扫描影像系统(PET/CT) | 此次拟购置1套正电子发射型计算机断层扫描影像系统(PET/CT),用于更新原有老设备。 | | |
| | 此次拟购置1套医用血管造影X射线机,用于更新原有老设备。 | | |
| | 此次拟购置1套X线计算机断层扫描系统,用于更新原有老设备。 | | |
| | 此次拟购置1套医用血管造影X射线机,用于更新原有老设备。 | | |
| | 此次拟购置1套磁共振成像系统(5.0T),用于更新原有老设备。 | | |
| | 此次拟购置1套医用直线加速器,用于更新原有老设备。 | | |
| 双极性化学电离大气常压高分辨率活性有机物测量质谱仪 | 拟购置一台双极性化学电离大气常压高分辨率活性有机物测量质谱仪,主要用于对宽氧化态范围的大气活性有机物等痕量污染物的高灵敏度在线测量和高分辨率分子组分解析。为实现上述目标,仪器应1)大气常压连续进样;2)使用化学电离实现分子水平的高灵敏度选择性测量,化学电离源可在线切换极性和反应离子,从而覆盖不同含氧数的有机物;3)使用高分辨率质谱实现复杂大气污染物的分子式测量和识别,质谱测量极性可随化学电离源同步切换;4)高灵敏度,能够实现大气浓度的测量。仪器还需要支持连续在线运行和外场观测。 | | |
| | | | |
| | 直线加速器:可以覆盖大部分适用放射治疗的肿瘤,包括肺转移癌、乳腺癌、宫颈癌、内膜癌、卵巢癌、腹部、头颈部肿瘤等。放疗设备的数字化可以使工作流程无缝衔接,创造统一和谐的诊疗环境,提高效率、增进效能、促进安全,达到治疗的精准化、个性化,从而在保障安全和质量的前提下,提高肿瘤之治疗效果和生存期,实现肿瘤患者的一站式诊疗,减少不必要的转诊及相关费用。 | | |
| | 分子束外延(MBE)是一种新的晶体增长技术,是在超高真空环境下,使具有一定热能的一种或多种分子(原子)束流喷射到晶体衬底,在衬底表面发生反应的过程。分子束外延系统是半导体、光伏 新材料 、科学研发领域重要设备之一,近年来,随着半导体、新材料等行业发展,分子束外延系统市场需求不断释放。 分子束外延系统是一种用于物理学、化学、材料科学领域的分析仪器。 本项目根据科研需求计划采购一套分子束外延系统。 | | |
| | 脉冲激光沉积是将脉冲准分子激光所产生的高功率脉冲激光束聚焦作用于真空室内的靶材表面,使靶在极短的时间内加热熔化、气化直至使靶材表面产生高温高压等离子体,形成一个看起来像羽毛状的发光团一羽辉;等离子体羽辉垂直于靶材表面定向局域膨胀发射从而在衬底上沉积形成薄膜。 脉冲激光沉积(PLD)是一种新型的制膜技术,在半导体薄膜、超晶格、超导、生物涂层等功能薄膜的制备方面发挥重要的作用。本项目根据目前科研需求计划采购一台脉冲激光沉积设备。 | | |
| | 磁控溅射是集成电子束蒸发的物理气相沉积系统,也是一种高真空多靶溅镀系统该系统,适用于多种材料体系薄膜的制备,如实验室中用于在衬底上生长半导体薄膜以及一些金属电极,如Au Al,Ni,Ag等。 本项目根据科研需求计划采购两台磁控溅射设备。 | | |
| | 原子层沉积(ALD)是一种高度精密和可控的薄膜制备技术,常用于制备纳米级薄膜、半导体器件和光电子器件。在半导体制造中,ALD被广泛应用于制备高k介电材料、金属栅极和互连材料。此外,ALD还可用于生产纳米结构的绝缘体和薄膜电致发光显示器的发光层等领域。本项目根据科研需求计划采购一台原子层沉积设备。 | | |
| | 激光直写是芯片制造流程必不可少的设备之一。由于科学研究自由度高,常规紫外光刻机需要定制光刻板,不能满足科研实验中快速迭代实验方案的需求。激光直写可以兼具光刻和电子束曝光的优点,具有电子束曝光无掩膜直写系统的灵活性和高分辨率,还具有紫外光刻机高速图形化和低成本的特点,可以在一定精度下快速直写曝光。根据目前项目科研实际需求,本项目根据科研需求计划采购两台激光直写。 | | |
| | 原子层沉积设备主要用于沉积出薄膜材料,例如Ⅱ-Ⅵ化合物、Ⅱ-Ⅵ基TFEL磷光材料、Ⅲ-V化合物、氮(碳)化物、半导体/介电材料、氧化物介电层、其他三元材料、单质材料。 原子层沉积设备主要由腔体、气体管路、加热前驱源系统、真空系统、预备腔等几部分组成。原子层沉积系统(ALD)是半导体器件、半导体材料的制备及集成电路工艺的基础性必备设备,主要用于生长金属氧化物,目前已被广泛的应用于微电子、物理、化学、材料、信息、生物和医学等多个学科领域。本项目根据科研需求计划采购2台原子层沉积设备。 | | |
| | 物理气相沉积设备是一种用于将材料薄膜沉积到基底上的系统,其工艺包括将固体材料转化为蒸汽,将蒸汽输送到低压区域,然后将其冷凝到基底上。 该工艺在半导体制造、太阳能电池和 LED 显示屏等多个行业中都至关重要。本项目根据科研需求计划采购两台物理气相沉积设备。 | | |
| | 子束蒸发台是集成电子束蒸发的物理气相沉积系统,该系统适用于多种材料体系薄膜的制备,如实验室中用于在衬底上生长半导体薄膜以及一些金属电极,如SiO2,ITO,Al,Ni,Ti等,尤其是剥离工艺(lift-off process)。 电子束蒸发系统是半导体器件制备工艺中不可缺少的仪器设备。本项目根据实际科研需求计划采购一台子束蒸发台。 | | |
| | 本底真空优于 5x10-8mbar;配有旋转加热样品台,样品可以通过辐射方式加热,最高加热温度 800℃,通过PID 温控仪实现温度精确控制;Ar,设备入口压力要求:1-2 kg/cm2,纯度>4N5;N2,设备入口压力要求:1-2 kg/cm2,纯度>4N5;O2,设备入口压力要求:1-2 kg/cm2,纯度>4N5;设备气路入口接头:外径 6.35 mm。 | | |
| | 生长速度≥8 nm/min,生长温度≤100℃,生长薄膜应力≤300 Mpa,薄膜均匀度(薄膜差异±5%),标配8路:SiH4、NH3、N2O、N2、O2、CF4、Ar、He流量可调,真空计(100mTorr),分子泵抽速≥1300L/s,抽真空 30 分钟以内,压力达到< 1E-5 mbar,本底真空:< 1E-6 mbar。 | | |
| | 时序波形发生器可配置多达64 个通道,每通道可达8M内存,时钟速率可高达250MHZ。 取样:时钟驱动卡和直流偏置卡提供电压检测和电流检测输出取样,供外置数字电压表采集数据数据采集;数据采集系统可配置多达32 个专用AD 通道,内存可达32 GB,有三个速度分辨率选项,数字采集部分为16 位LVDS数据,每通道速率高达200MHZ。 | | |
| | 拟购仪器为在线气溶胶高分辨质谱分析系统一台,主要是利用该仪器超高分辨率以及及其稳定的质量精度等特点,对环境未知物进行精确筛查,能够实现以下功能: (1)大气气溶胶成分在线分析; (2)大气气溶胶有机组分离线分析; (3)环境新污染物的非靶向筛查; (4)大气环境暴露组学研究。 设备要求具有超高分辨率,超快速扫描、高速正负极性切换功能,实现高灵敏度、高稳定性。具体要求如下: (1)ESI与APCI切换自由切换; (2)自动内标校正源,实现自动实时校正质量轴; (3)仪器分辨率:不低于100,000 FWHM ( m/z≤200 ); (6)质量范围满足40-3,000 m/z (7)正负扫描模式切换速度:分正负切换时间不超过0.7S; (8)能够实现在线测量。 同时:仪器须为全新原装正品,质保不低于3年,交货期在合同签订后3个月以内。 备注信息:质量精度≤3ppm(外标法)。 | | |
| | 针对8inch及以下尺寸的硅晶圆进行隐形切割加工,提高工艺平台器件划片精度,实现对传感、存算芯片高精度划片,统一分立器件的尺寸便于相关器件的异质集成工艺实现。 | | |
| | 环境模拟系统中的信息安全、数据存储和预处理及网络接入等设备,并提供统一管理,其中包括如下3模块: 1.信息安全模块:购置支持40个以上IT机柜的微模块机房及其配套的供电、环境、消防、安防等辅助设施;购置全套软硬件安全设备,需确保全系统达到等保三级要求并通过评测。 2.存储和数据预处理模块:购置6PB以上(可用容量)分布式存储系统、集群算力和与其配套的交换网络;购置存储和算力需与原有存储和算力进行统一集中纳管模块;需与学校计算平台实现互联互通。 3.网络接入和模拟舱支持模块:为模拟舱系统和测量仪器提供网络接入,接入方式包括高速以太网及多种灵活的物联网接入方式以实现全系统中设备、测量仪器接入;购置桌面云服务器和终端为模拟舱内外测量仪器提供云化机控终端服务;购置北斗/GPS 卫星授时的NTP服务器为全系统提供精准授时。 以上三模块为有机整体,需提供统一管理界面并统一通过安全测评。购置设备需免费提供至少5年运维保障服务。 | | |
| | 采购设备名称:浮动纳米材料沉积系统1套,该设备是为了实现纤维电极材料中试化生产制备。该设备可通过高温气相流制备连续碳纳米管纤维,具有连续生长不间断的特点,并且配套了连续加捻及收集装置,可以实现百万米级碳纳米纤维的连续化生产和制备。同时配套了控温、进样、后处理装置,可以实现碳纳米纤维电学、力学及电化学性能的有效调控,是碳纳米管纤维产业化的关键设备,用于高性能纤维电极材料的研发与制备。采用与国内厂商自行搭建沉积制备系统,确保纤维连续性和高力学、电学等性质。设备参数:采用双层壳体结构并带有风冷系统,壳体表面温度小于60 ℃,采用高纯氧化铝作为炉膛材料,炉膛表面涂有进口1750 ℃氧化铝涂层,可提高加热效率(20%),延长仪器使用时间,采用PID方式调节温度,并可以设置30段升降温程序,采用S型热电偶进行测温和控温,连续工作温度100-1400 ℃,最高使用温度1400 ℃。 | | |
| | 采购设备名称:纤维半导体器件成像测试仪1套,该设备是对纤维电极材料和纤维器件进行原位成像,表征形貌结构。该设备可以适用于清晰表征纤维高景深弯曲表面,同时可以测试织物整体亮度分布与发光纤维均匀性,为表征大面积高分辨率织物显示中各个微米到纳米级的像素点发光情况提供重要保障。引进国内领先的半导体器件成像设备,确保测试精度和稳定性。设备参数:超景深光学数码显微镜DX-1000模块, 倍明暗场型长工作距离平场半复消色差物镜,数值孔径0.40,工作距离12 mm,综合放大倍数320-3280X;倍明暗场型长工作距离平场半复消色差物镜,数值孔径0.50,工作距离10.6 mm,综合放大倍数820-8220X;暗场型万能平场半复消色差物镜,数值孔径0.15,工作距离12 mm,综合放大倍数70-700x;成像亮度计LMI-1000,像素分辨率4634×3500,像素大小3.8 μm×3.8 μm,像素深度16bit,测量范围0.0001-100000 cd/m2,尺寸88×88×150 mm;高压放大器及波形发生器,120 MHz,2通道,64M存储。 | | |
| | 采购设备名称:纤维半导体器件微纳加工系统1套,该设备是对纤维材料和器件表面进行微纳加工。针对纤维器件定制配备了半导体行业专业光刻与薄膜沉积系统,用于纤维器件弯曲表面进行高精度纳米级图案化设计加工,以满足曲面加工需求。现有纤维涂敷、卷绕工艺难以满足对纤维电子器件的轴向方向上的高精度、多功能设计。该设备作为微纳加工、精细化加工的重要设备,是纤维电子器件向高集成化、多功能化纤维器件发展的必要需求。采用与国内知名厂商定制和搭建的纤维半导体器件微纳加工系统,确保图案化精度和稳定性。设备参数:定制曲面激光直写光刻机模块,曲面耦合电机,重复定位精度5 μm,最大转角360°,激光波长365 nm,加工精度0.6 μm。纤维OLED旋转蒸镀仓,定制电机转速8°/s。蒸发舟数量大于8,电源数量大于2。蒸发距离200-400 mm,配置配套手套箱及I-V-L测试系统。常温真空化学气相乘积CVD仓,加工温度区间20-80 ℃,薄膜厚度生长区间10-500 nm。 | | |
| | 采购名称:高分辨多功能三维无损检测仪1套,该设备是对纤维材料和纤维器件进行无损伤结构表征。该设备为高分辨率的三维表征设备,为各种尺寸的样品提供亚微米级成像解决方案。保持先进的大样品高分辨率技术优势的同时,该系统可实现高达500 nm空间分辨率。该产品通过使用更高分辨率的光学元件,实现分辨率和成像通量的提升。还可进行扩展和升级,包括原位接口、4D原位试验平台等多个拓展模块,该产品可实现纤维能源材料、显微等各种纳米材料科学高分辨率无损分析。引进国内领先的三维无损检测设备,确保精度和稳定性。设备参数:最高空间分辨率:最佳三维空间分辨率≤0.8 μm;当X射线源距样品旋转轴50mm时的最佳空间分辨率≤1.5 μm;最小可实现的体素≤ 40 nm;重构时间:2000张2k×2k投影重构图像数据(重构972张Slice图像)时间≤5分钟;支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据;高能量微聚焦闭管透射式X射线源,支持快速激活。最高电压≥160 kV,最低电压≤30kV,电压在最低和最高之间连续可调。最大功率不小于25 W;配备自动滤镜转盘并安装有10个不同过滤能力的滤波片;能够实现二级放大的16 bit噪声抑制闪烁体耦合探测器, 探测器能够实现1024×1024以上的像素成像和三维重构;包含高对比度、高分辨率的20X 物镜探测器;包含高分辨率40X物镜探测器;样品台360度旋转。 | | |
| | 采购设备名称:全自动纤维布线仪1套,该设备是对纤维器件进行大规模集成。全自动布线机用于电子织物及织物电路的设计与加工成型。需要通过专用的布线设备将纤维器件设计构建成电子织物系统,可实现不同种类纤维器件的自动送线及智能跟踪作用,并可以实现不同直径纤维器件的精准布线,保证织物系统平整不褶皱。是实现织物及控制电路系统设计及加工的关键设备。采用国内顶尖的自动纤维布线设备,确保布线连续性、电路精度、稳定性和制备效率。设备参数:纤维器件布线范围:900×600 mm,8工位;自动化模块包括扎线报警:用于检测扎线时,及时报警停机,可以避免扎线后继续运行,材料浪费,包含整套检测回路导通模块;自动送料:纤维器件自动送线功能,让纤维器件按所需线量速度放线,避免布线过程拉花,包含送线电机和感应器模块;自动换底线:1出1自动换底梭;双向随动/左右进料:可以自动送料出料,实现自动完成送、夹、收等完整节拍,包含整套收卷机,感应器,计米器,随动电机等;气动夹料:整套框架自动夹布,并且实现夹布预紧功能,包含整套气动夹具和压框模块;可视面线张力系统。 | | |
| | 采购设备名称:皮秒激光纤维雕刻机1套,该设备属于纤维电极微纳加工设备。皮秒激光应用于各类材料的冷消融,皮秒激光加工的方式可克服材料快速加工中热效应产生的各种弊端。无热效应特性使其成为加工高性能纳米纤维、复合材料和纤维增强结构的理想工具。此外,皮秒激光的高加工精度可实现在各类金属、高分子纤维上的快速图案化加工,并能够精确控制和加工复杂的纤维微纳结构,同时可以为纤维材料表面刻蚀出复杂的微纳图案,特别适用于高分子纤维与纳米纤维等精细结构的制作,为功能纤维和纳米材料的表面改性和图案化设计提供关键支持。引进国内领先的皮秒激光纤维雕刻设备,确保微纳加工精度和稳定性。设备参数:最大材料尺寸&加工幅面 (X×Y×Z): 229 mm × 305 mm × 7 mm;激光波长: 515 nm;激光脉冲频率: Max. 50?-?500 kHz;激光脉宽 :1.5 ps;激光功率 :8 W;光斑直径 :15 μm;移动速度 (X×Y×Z): 100 mm/s x 100 mm/s x 10 mm/s;外形尺寸 (W×H×D): 910 mm x 1650 mm x 795 mm (机罩开启状态高度 = 1765 mm)。 | | |
| | 反应离子蚀刻 (RIE)是一种制造微观和纳米结构的等离子体蚀刻技术。 在RIE蚀刻过程中,样品表面与低压等离子体产生的高能离子/自由基相互作用形成挥发性化合物。 挥发性化合物从样品表面被去除,并实现了各向同性或各异性轮廓。通过优化干式蚀刻配方(腔体压力、射频功率、气体流量比),可以使用RIE蚀刻技术蚀刻各种类型的材料。本项目根据科研需求计划采购一台RIE刻蚀机。 | | |
| | 复旦大学拟通过公开招标的方式确定一家供应商对157例人体样本进行DNA提取、DNA质检、测序文库构建、上机测序,获得基因组测序数据,用于相关生物信息学分析。测序选用三代长读长测序,拟采用Nanopore测序平台,并对下机数据进行过滤处理。 | | |
| | 可以进行多通道神经生理电信号的采集,可以实现开环电刺激或者根据采集的电信号进行闭环电刺激。可用于神经生理调控实验。 | | |
| | 摄像头数量不少于16; 高速红外运动捕捉摄像机≥500万像素; 频率范围1-500fps可调,最大测试距离≥35米,充电完全后使用时间≥4.5h Marker球组合装:不少于100个12.5 mm Marker球及底座、不少于1套上肢标记架、不少于1套下肢标记架、双面胶等; 运动学分析包括:重心、关节点位移、速度、加速度、角度、角速度、角加速度等。 | | |
| | 通过蓝牙与控制设备连接,受控制设备控制进行震动刺激输出。可用于精神调控实验。 | | |
| | 1. 24U一体化机柜设备 2. 可视化屏大于等于31.5英寸 3. 支持不少于1000名并发用户数同时在线且错误率小于万分之1;支持多用户相互独立的Web界面2D/3D在线可视化且不依赖访问终端的设备性能。 4. 内置软件包含数据采集、质控管理、多中心数据管理、数据处理等核心模块。系统基于Web界面或云端的数据汇交模块,可以高效安全的进行数据汇交,数据快速上传、入库、标记、审核,提升网络安全能力。同时包含算法中心,用于不传输原始数据情况下,开展多站点协同分析。 | | |
| | 多通道高速数据采集系统用于采集和测试通信和感知阵列输出信号,是对通信和雷达芯片系统进行测试和评估的必要设备。拟购买的设备需提供多通道的高速高精度信号采集功能,以满足通信和雷达阵列接收芯片的测试需求。 | | |
| | 拟采购一套太赫兹信号频率扩展模块,主要包括信号源和频谱仪扩频模块。扩频模块需要提供毫米波至太赫兹波段的覆盖。信号源扩频模块需要提供足够的输出功率。频谱仪扩频模块需提供良好的变频损耗性能。设备需适配罗德和是德的射频源和信号频谱分析仪。 | | |
| | 射频微波信号源是研究光电器件、芯片和系统不可或缺的工具。其要作用是产生测试所需的射频信号,从而评估和优化器件和芯片的性能。拟采购的设备需提供最高67GHz的输出频率,同时拥有优良的输出功率,相位噪声以及矢量调制带宽性能。 | | |
| | 6G通信D-Band 收发机射频前端用于搭建6G通信测试系统,作为接收机或者发射机来对太赫兹通信芯片系统进行测试,从而评估和优化芯片的性能。拟采购的设备频率范围覆盖110-175GHz,发射机需提供优良的功率和信号带宽,接收机需要提供优良的灵敏度。 | | |
| | 我们计划引进一套高通量长时程活细胞动态成像与分析系统,实现长达四个月的连续成像,适用于多块细胞样本的长时间明场和荧光成像,能精准记录活细胞形态的细微变化。系统内置多种分析模板和成熟的细胞分析模型,支持自动化和高通量的定量分析,有助于准确捕捉细胞反应的关键时刻及其持续时间。 该系统将用于细胞迁移、干细胞分化、细胞凋亡、免疫肿瘤杀伤等多个生命科学研究领域,推动大规模筛选与长期研究的发展。我院目前缺乏此类长时间实时监测能力。 | | |
| | 人类电磁特性包含丰富的人体组织生理信息,是一类重要的人体表型,也是组织病变诊断的可靠的手段。动态调控生物电磁测量分析系统可用于人体组织电特性磁共振断层成像(MR-EPT)的技术,其可程序化控制场分布的测量以分析获取B1+和B1-的相位成分用于估算实际测量时的相位,实现更准确的B1+和B1-的相位占比值的获取,从而实现更精确的MR-EPT重建。该系统是依据MR扫描数据准确重建人体队列电磁表型组数据的关键系统。 | | |
| | 可控环境表型精密测量研究设施包含一体化多模态环境模拟舱和近真实世界模拟舱共2套6舱室的环境模拟舱群,具有温湿度、含氧量、光照、声波、风速等多参数变量同时调节功能,可模拟人类正常活动范围内自然环境气候数据和大气成分数据,真实还原目标地点在指定时间的环境状况和动态变化。 一体化多模态环境模拟舱划分为舱1、舱2、舱3三个舱室,各舱室可独立控制或联合控制;舱1和舱3为工作舱,舱2为过渡舱。近真实世界模拟舱划分为舱4、舱5、舱6三个舱室,各舱室可独立控制或联合控制;舱4和舱6为工作舱,舱5为过渡舱。 | | |
| | 人体介电常数测定和物理效应分析系统通过对人体组织电气参数的测定,结合MRI图像及其内部射频场SAR值数据,可实现人体电磁表型参数的直接准确测定和高精度数字仿真人模型的构建、数据管理和便捷应用,是人体结构及组织特性数据测量、仿真、数据管理的基础性设施,为精准物理刺激治疗研究、中国电气数字仿真人构建、磁共振扫描风险边际控制阈值优化及磁共振序列研发设计等研究提供有力的工具。是实现人体电磁表型数据管理和应用,个性化生物物理调控及评估研究的综合解决方案不可或缺的重要工具。 | | |
| | 模拟舱内专业光环境模拟单元 1.高动态光照模拟单元 照度范围:0-15000lx,精度<±1%; 光谱范围:380-780nm; 色温范围:3500K-7000K,精度<±250K; 人体节律CS值范围:0-0.68; 工作温度范围:-20℃~55℃ 工作湿度范围:5~98%RH,无冷凝 2. 任意光谱模拟单元 光谱范围:350nm-1000nm 色温范围:2000K-20000K,精度<±50K; 同色异谱指数(MI)≤0.25; 显色指数(Ra)>97,精度<±5; 工作温度范围:-20℃~55℃ 工作湿度范围:0%~70%无冷凝 以可移动形式实现重点区域光照 3. 紫外、红外光谱模拟单元 紫外照明波长:222nm、305nm 红外照明波长:1050nm 工作温度范围:0℃~30℃ 工作湿度范围:0%~70%无冷凝 以可移动形式实现重点区域光照 4. 系统控制 通过软件对光环境系统光照条件进行发光特性调控,可设定光照模式,对光谱、照度、色温等光环境参数进行调节; 任意光谱模拟单元可通过导入的光谱文件复现所需光谱的光照环境; 可通过外接光谱仪对整体光照环境进行调光校准。 | |
|
| | 该系统专为存储器、逻辑电路和Flash芯片的超高速高精度同步电性能测试设计,能够实时进行芯片的高精度测试与数据分析。通过特定波形脉冲信号对制备好的存储器进行测试,系统将输出的电流信号转换为电压信号,并通过示波器实时监测与采集数据,确保测试结果的精确性和可靠性。指标要求:1.高分辨率源表模块:支持±100V的电压范围和±100mA的电流范围,适用于精密电气参数测试; 2.超快速脉冲与瞬态IV测量模块:提供峰峰值输出≥10V,适合高动态响应器件的测量;电容测试单元:频率范围覆盖1 kHz至5 MHz,电容测量精度≤±0.31%,满足高精度电容参数测量需求;3.矩阵开关:支持24路通道切换,测量分辨率≤10 fA,适用于复杂的多通道测试场景;4.高温测试能力:系统具备高达300°C的高温操作能力,适合在极端温度下进行半导体器件的电流、电压等关键参数测试;5.脉冲测试:能够生成高压脉冲信号,以评估半导体器件在高压条件下的响应;6.CV与IV测量切换:系统支持快速在电容(CV)和电流-电压(IV)测量模式间切换,无需重新连接设备,确保测试流程高效顺畅;7.数据分析与图形显示:系统具备数据分析与报告生成功能,配合图形化显示界面,提供全面的测试结果可视化;8.模块化设计:系统设计灵活,可根据不同的测试需求进行配置与扩展,适用于半导体材料及器件的全面表征与性能分析。 | | |
| | 拟采购一台在线大气气溶胶粒径分析系统,仪器功能和作用包括: 1.实时监测:该系统能够连续不断地对大气中的气溶胶颗粒物进行实时监测,无需人工干预,大大提高监测的效率和准确性。 2.粒径分析:系统能够测量气溶胶颗粒物的粒径分布,从而了解不同粒径范围内的颗粒浓度和大小分布情况。这对于评估空气质量、监测污染源以及研究气溶胶对健康和环境的影响具有重要意义。 3.数据传输与处理:在线大气气溶胶粒径分析系统通常配备数据传输和处理功能,能够将实时监测到的数据实时传输至数据中心或客户终端,并进行自动分析和处理。这使得研究人员能够及时了解大气气溶胶的变化情况,为相关研究和决策提供科学依据。 4.预警与报警:当监测到大气中气溶胶颗粒物的浓度或粒径分布超过预设阈值时,系统能够自动发出预警或报警信号,提醒相关人员及时采取措施,保护环境和人类健康。 5.科学研究:在线大气气溶胶粒径分析系统为大气科学研究提供了重要的数据支持。通过长期连续监测,研究人员可以深入研究气溶胶颗粒物的来源、传输、转化和沉降等过程,以及它们对气候变化、云形成、辐射平衡等的影响。 环保政策制定:该系统提供的实时监测数据和分析结果可以为环保政策的制定提供科学依据。政府可以根据监测结果制定更加科学、合理的环境保护政策,如限制污染物排放、推广清洁能源等。 该粒径谱系统要求性能稳定,具有超高时间分辨率和粒径分辨率,实现宽粒径范围的测量。具体要求如下: 粗粒径段:空气动力学原理,0.5-20微米,52通道,最快时间分辨率1秒 超细粒径段:10-1000nm, 64通道/10倍粒径,总通道数 大于100, 粒子浓度范围 1-10E7/cm3, 纳米粒径段:1.5-50nm, 64通道/10倍粒径,总通道数 大于100, 粒子浓度范围 10-10E7/cm3, 粒径范围1.5nm至20μm,粒径通道数包括0.5μm-20μm 52通道,1.5nm-1000nm 大于200通道最短测量时间10s。 仪器预计全年使用机时7500小时,其中5000小时对内服务,2500小时对外服务。 | | |
| | 功能要求:适用于4英寸、6英寸和8英寸晶圆物理单片清洗,可完成正面、背面和边缘的清洗。需要采用Nano Spray无损二流体冲洗技术,降低晶圆正面清洗损伤率。背面和边缘清洗采用刷洗技术。设备需采用单元模块化的设计,使其易于在不同的设备设置中进行快速调整和维护。 | | |
| | CTSF 电荷转移态能阶拟合分析,测试能力范围0.7~2eV;最小光电流测试能力10pA;量子效率动态范围120dB;量子效率测试不重复性<1%;具备 NIR波段(700-1100nm)测试能力;EL-EQE具备光谱强度高动态范围测量能力,最低可达10-5% (6个数量级的动态范围);具备Voc损耗分析 及PLQY测试集成系统. | | |
| | 深硅刻蚀设备是MEMS领域关键设备,与传统集成电路刻蚀设备对线宽要求不同,其要求更高的刻蚀速率、更好的刻蚀均匀性以及直、斜孔刻蚀形貌的控制能力。深硅感应耦合等离子刻蚀机在刻蚀过程中实现高效耦合及稳定起辉的性能,能实现高均匀性、高精度、良好的重复性,充分保障我校科研工作有序开展。在其各部件中,反应系统密封性能高,保证了低的真空泄漏率;稳定的ICP源和射频功率源在低压具有稳定可靠的起辉性能;采用高稳定性电感耦合等离子体源,能实现8英寸晶圆各向异性的高速率刻蚀。系统全自动控制,刻蚀深度大于100微米,刻蚀全过程中的工艺气体进气精度不低于±1%、重复性不低于±0.2%,真空泵保证稳定的抽速,电感耦合刻蚀可在最低2mTorr气压下刻蚀以及成熟的控制系统. | | |
| | 可调光强范围:0.1~3 sun等效光强;加热台控温RT-120℃,精度±1℃;控湿范围20-95%RH;16通道独立进程 独立控制 并行测试;光源使用寿命: ≥20000小时;光强稳定性:10000小时衰退≤2%;有效光照面积:600mm*600mm。 | | |
| | 100 mm× 100 mm光斑;光谱匹配度:AM1.5 G,不匹配度<6.25%,A++ 级;辐照空间不均匀性:<2%,A 级;时间不稳定性:<1%,A +级;1600 W氙灯灯源;光谱可调: T/B current ratio: 0.9 ~ 1.1 ;多异质结光电器件测试专用软件。 | | |
| | 键合机主要用于裸芯片或微型电子组件的贴装,将芯片安装到引线框架、热沉、基板或直接安装到PCB板上,以此来实现芯片与外部之间的电连接。本项目拟采购一套超高真空晶圆键合机,在高真空环境下满足8英寸晶圆的永久性键合。 | | |
| | 热导率测试范围:0.05-2000 W/mK;误差:<10%; 热扩散率测试范围:0.05-1000mm2s-1,误差;<10%。 | | |
| | 测试范围1-25微米;温度范围RT-800度;分辨率: ≤ 0.10 cm-1;灵敏度:峰-峰信噪比 ≥60000:1。 | | |
| | 四探针同时可扫描,样品精度:±4 mm;针尖定位:采用光学显微镜双扫描管结构,可以安装到现有超高真空系统上的一个小型超高真空原位四探针测量装置。可以对一些超高真空中制备的,不宜暴露大气的样品进行原位的表面输运性质测量。使用和STM类似的逼近和锁相放大器IV测量。 | | |