首页
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
更多
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
运营数据分析体系,最全搭建攻略来了!
科技
2024-10-10 08:30
北京
运营部门一向是数据分析需求大户,而做过运营分析的同学,经常会觉得细节多,琐碎,很多问题相互纠缠在一起很难理清。那运营分析到底该怎么做才系统,高效?今天详细地分享一下。
从运营的工作特点说起
运营工作,和销售、供应有明显区别。比如销售工作,核心关注收入、利润、转化率,能赚钱就行。比如供应,核心关注商品供应、库存周转、成本控制,不缺货,少积压就行。这些工作的目标聚焦,流程清晰。
而运营工作目标多,形式灵活。比如做活动运营,可能是直接促进销售转化,也有可能是拉拉用户活跃,保持平台人气。比如做社群运营,可能是纯粹为了把公域用户先捞回来,也能基于社群做服务或者销售转化。
更有可能,比如做1次大型活动,要先做引流推广,再转化,再做售后支持,一场活动下来,各个类型工作都有关联。
这种工作特点,使得做运营数据分析的时候,得特别注意以下四点:
第一:清晰目标
运营工作目标多,因此事前清晰目标很重要。清晰目标才能选择合适的方案,配置恰当的资源,事后分析也才有方向。
运营常见的目标设定方式有三种:
1、达成绝对值目标,比如:在5月内,实现总用户100万
2、达成比例/比例类目标,比如:5月份全月,交易转化率从10%提升到15%
3、达成增量目标,比如:在5月份内,较自然增长额外拉动交易3000万
这里目标1、2都可以直接用数据观察,但目标3涉及“自然增长”的定义,必须事前谈清楚。不然事后很可能无法分析。常见的自然增长定义有3种(如下图所示)每一种都各有利弊,并没有一个完美方案,因此事前一定要和老板、各部门达成共识。
这里经常有人偷懒,在事前不设量化目标,只是笼统说一句:“为提升业绩”、“为拉升用户活跃”……企图在事后,通过数据分析的手段来区分哪些是自然增长,哪些是活动效果。结果经常区分不出来,搬石头砸自己的脚,大家要引以为戒。
第二:梳理指标
运营工作形式灵活,因此经常需要根据实际工作流程,来设定数据指标。一来方便监控执行进度,二来在复盘的时候,好观察哪个环节出了问题,便于追查原因,寻找机会。
比如,运营部门上一个“签到领福利”的活动,每月打卡7/14/21次可以得奖励,奖励包含优惠券,希望同时刺激用户活跃+转化。此时要把下面
这些过程指标都梳理出来,方便后续追踪数据,复盘效果(如下图所示):
1、从什么渠道输出信息
2、一共吸引多少用户参与
3、 每个阶段有多少人完成
4、领取奖励后多少人消费
注意,如果有连续开展的运营活动,需要持续追踪用户参与情况。比如上边说的打卡签到,在持续n个月以后,会有相当数据积累,可以观察:
1、 整体影响到用户是否增加
2、有多少用户重复参与
3、有多少用户从不参与
不同的数据走势,可以得出不同结论(如下图),结合数据走势,可以更好地判断:一个运营手段应持续做下去,还是做出调整。
第三:打好标签
影响运营效果的因素很多,推广渠道、推广文案、活动形式、操作步骤、转化商品、优惠力度等等,都会影响到效果好坏。因此需要在开始干活之前,先对推广文案、推荐商品、操作流程等关键因素,打好标签,才好在事后进行分析(如下图)
除了单个标签外,还可以对运营措施整体打标签,对整体情况进行判断。比如提升用户活跃,领红包、签到、大转盘、积分榜等等好几种手段都可以用,每种手段都可以配置奖励,此时就可以利用标签,把各种手段分组对比,从而了解每一种手段的效果范围,为后续运营提供经验积累(如下图)
。
第四:按图索骥
如果做好了前三步,在做运营数据分析的时候,难度就非常小了。
1、对比目标,看完成了多少,看投入是否超支,先下个判断:本次做得好/不好
2、对比同样目标下,历次运营活动的效果,看本次属于:上、中、下什么水平
3、检查过程指标,看看引流→承接→转化,哪个环节有问题
4、对比不同标签下转化效果差异,看哪种手段好用/不好用
这样就能输出结论了。
在工作中,经常看到运营分析没结论,是因为:
1、目标不清晰,或者干脆没目标,光有一堆数据,没结论
2、过程指标收集少,只知道最后转化不行,不知道为啥不行
3、缺少标签,无法把运营手法量化,无法评价好坏
做好准备,才有好的分析结果,切记切记。
小结
综上可见,想要做好运营分析,需要掌握数据指标体系梳理、标签制作、分析思路等综合能力,才能适应各种场景的要求。
http://mp.weixin.qq.com/s?__biz=MzIxMzAxNzEwNQ==&mid=2648125968&idx=1&sn=06d1b9c9b866f837bceb22531829382b
一个数据人的自留地
数据人交流和学习的社区,关注我们,掌握专业数据知识、结识更多的数据小伙伴。
最新文章
数据民主化的“神话”
AI横行,它越战越勇!
大模型时代下的私有数据安全与利用
【急聘】七猫-后端开发工程师
代码复用率99%,携程市场洞察平台Donut跨多端高性能技术实践
腾讯、抖音、百度、快手、携程、小米、工行、平安集团如何在大数据架构、数据库管理、运维保障中落地AI技术?丨DAMS峰会
太卷了吧,这份【运营分析】思路真是到位
四大行业、零跑汽车等12家企业BI数字化转型实践
数据驱动?我们连数据都跑不通,更别提驱动了
搞清楚毛利这些指标,总算会做经营分析了!
腾讯语音合成技术:模型优化与推理加速实践
资深PM必懂的项目管理4大模型!
【数据分析干货】一种基于匹配思想的因果分析方法
用户分析,找到一份完整的攻略
终于有人,把数字化转型的本质讲清楚了!
72k,确实可以封神了!
还在错误地统计AB实验效果?快来了解正确方法避坑吧
腾讯基于 LLM 的智能数据分析平台 OlaChat 的落地实践
携程弱网识别技术探索
数据分析十大模型之决策模型
一个基于Python的自动化邮件日报模版
零售消费行业20项BI最佳实践(附下载)
快手电商数据指标体系建设与实践
一种基于贡献度的除法指标异动归因方法
解码智能推荐:多模态大模型在网易云音乐的创新应用
大前端:如何突破动态化容器的天花板?
我们要做数据治理,预算 500 万,到底如何实施工作计划? | DGI治理框架(七)
卷死他们!数据赋能运营,就得这么干
数据仓库实践之任务调度
大呼专业!找到一个【数据指导运营】的思路
如何提升用户画像标签质量及信任度?
银行快速数智化转型的改革先锋——视频分析大模型技术
用户画像:OneID是如何实现的?
关于你不知道的 Python import 10 件事
深圳数据人线下沙龙活动
数据分析,如何诊断业务问题
深圳数据人线下沙龙活动
一文读懂:数据如何从要素变为资产?
深圳数据人线下沙龙活动
深圳数据人线下沙龙活动
京东大数据治理探索与实践
喜马拉雅基于大模型 ChatBl 实践探索
全域用户建模在美团首页推荐的探索与实践
干货 | 携程国际机票基础数据中台化:构建高效的数据管理和应用平台
运营数据分析体系,最全搭建攻略来了!
重塑数据价值:从数据中台到数据飞轮的跨越
标签 VS 数据指标体系,这篇讲得太清楚了!
用户复购行为,如何分析?
小红书搜索:生成式检索的探索与实践
研究了近6年的Gartner数据和分析趋势报告后,我得到了10个洞察!
分类
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
原创标签
时事
社会
财经
军事
教育
体育
科技
汽车
科学
房产
搞笑
综艺
明星
音乐
动漫
游戏
时尚
健康
旅游
美食
生活
摄影
宠物
职场
育儿
情感
小说
曲艺
文化
历史
三农
文学
娱乐
电影
视频
图片
新闻
宗教
电视剧
纪录片
广告创意
壁纸头像
心灵鸡汤
星座命理
教育培训
艺术文化
金融财经
健康医疗
美妆时尚
餐饮美食
母婴育儿
社会新闻
工业农业
时事政治
星座占卜
幽默笑话
独立短篇
连载作品
文化历史
科技互联网
发布位置
广东
北京
山东
江苏
河南
浙江
山西
福建
河北
上海
四川
陕西
湖南
安徽
湖北
内蒙古
江西
云南
广西
甘肃
辽宁
黑龙江
贵州
新疆
重庆
吉林
天津
海南
青海
宁夏
西藏
香港
澳门
台湾
美国
加拿大
澳大利亚
日本
新加坡
英国
西班牙
新西兰
韩国
泰国
法国
德国
意大利
缅甸
菲律宾
马来西亚
越南
荷兰
柬埔寨
俄罗斯
巴西
智利
卢森堡
芬兰
瑞典
比利时
瑞士
土耳其
斐济
挪威
朝鲜
尼日利亚
阿根廷
匈牙利
爱尔兰
印度
老挝
葡萄牙
乌克兰
印度尼西亚
哈萨克斯坦
塔吉克斯坦
希腊
南非
蒙古
奥地利
肯尼亚
加纳
丹麦
津巴布韦
埃及
坦桑尼亚
捷克
阿联酋
安哥拉