PART.01
我们提出了一种结合第一性原理计算和机器学习的方法,以在绝对尺度上预测半电池反应的氧化还原电位。通过应用机器学习力场进行从氧化态到还原态的热力学积分,我们在宽相空间上实现了高效的统计采样。此外,通过使用 Δ 机器学习从机器学习力场到半局部泛函的势能,以及从半局部泛函到混合泛函的热力学整合,我们逐步以高精度细化自由能。利用包括 25% 精确交换 (PBE0) 的混合函数,该方法预测三个氧化还原对 Fe 的氧化还原电位3+/铁2+铜2+/Cu 和 Ag+2+/Ag 分别为 0.92、0.26 和 1.99 V。这些预测与最佳实验估计值 (0.77、0.15、1.98 V) 非常吻合。这项工作表明,机器学习的代理模型提供了一个灵活的框架,用于从粗略近似方法到精确的电子结构计算来改进自由能的准确性,同时也促进了足够的统计采样。
近年来,深度学习在光学设计领域的应用引起了广泛关注。随着光子学结构设计成为光电子器件和系统设计的核心,深度学习为这一领域带来了新的机遇和挑战。传统的光子学结构设计方法通常基于简化的物理解析模型及相关经验,这种方法虽然可以得到所需的光学响应,但效率低下且可能错过最佳设计参数。深度学习通过数据驱动的思想建模,从大量数据中学习研究目标的规律与特征,为解决光子学结构设计面临的问题提供了新方向。例如,深度学习可以用于预测和优化光子学结构的性能,实现更高效、更精确的设计。在光子学结构设计领域,深度学习已被应用于多个方面。一方面,深度学习可以帮助设计超构材料、光子晶体、等离激元纳米结构等复杂的光子学结构,以满足高速光通信、高灵敏度传感和高效能源收集及转换等应用需求。另一方面,深度学习还可以用于优化光学元件的性能,如透镜、反射镜等,以实现更好的成像质量和更高的光学效率。此外,深度学习在光学设计领域的应用还推动了其他相关技术的发展。例如,深度学习可以用于实现智能光学成像系统,通过自动调整光学元件的参数来适应不同的成像需求。同时,深度学习还可以用于实现高效的光学计算和信息处理,为光学计算和信息处理领域的发展提供了新的思路和方法。
近年来,第一性原理计算方法(例如密度泛函理论,DFT)在材料科学中的应用取得了显著进展,为新材料的设计和性能优化提供了强有力的工具。借助计算资源的提升和算法的改进,这些方法可以在原子水平上模拟材料的结构、电子性质和动力学行为,为实验研究提供重要的补充。
在材料科学和机器学习交叉领域中,机器学习技术正在不断革新材料发现的方式。这门课程旨在利用计算技术和数据科学方法,尤其是机器学习技术,来应对传统材料研发面临的复杂设计和高成本问题。
机器学习在材料科学中的应用
机器学习正成为材料科学的关键工具,通过挖掘和理解材料的构效关系,实现更为精准和高效的材料设计。例如,Butler等人(Nature, 2018)讨论了机器学习在材料科学中从数据采集、建模到预测的应用框架,为材料设计提供了强有力的计算支持。随着计算能力的提升和数据资源的积累,机器学习方法已经从传统的线性回归和分类算法扩展到深度学习、集成学习等先进技术,这些技术为材料科学中的复杂构效关系建模提供了更多工具。
深度学习前沿背景
近年来,深度学习在材料科学中的应用日益广泛,为新材料的设计和性能优化提供了强大的工具。特别是随着数据资源的快速积累和计算能力的提升,深度学习方法被广泛用于预测材料的结构、性能以及微观组织的演化。这些方法能够在高维数据中捕捉复杂的构效关系,显著加快材料发现和开发的过程。
随着深度学习在材料科学中的应用日益深化,数据驱动的智能化方法正在为材料设计和性能优化带来前所未有的创新。通过卷积神经网络、生成模型和图神经网络等深度学习技术,研究者们能够从大规模数据中提取复杂的结构特征,预测材料的物理和化学性能,并探索微观结构的演化过程。这些技术加速了新材料的发现和优化,降低了实验成本和研发时间,逐步替代了传统的试错法。
专题一:深度学习光学设计专题
专题二:深度学习第一性原理专题
专题三:机器学习材料专题
专题四:深度学习材料专题
专题五:机器学习分子动力学专题
专题六:深度学习声学超材料专题
学习目标
深度学习光学设计目标:
1.基于深度学习的光网络的培养目标主要集中在培养具备现代光学理论基础和深度学习技术知识的高级专业人才。他们不仅需要熟悉现代光学的原理,还需要掌握深度学习算法的原理和应用,能够结合深度学习和现代光学原理设计出具有光学加速功能的器件。
2. 初步掌握构建深度学习模型所需的使用的工具,学会搭建深度学习开发环境。让初学者能够使用深度学习框架搭建常用神经网络模型,了解模型训练过程中出现的问题并掌握常用的解决办法。
3. 熟悉超材料的发展现状,基本掌握多物理场仿真软件,并能够使用该软件计算光子晶体的能带并对仿真结果做后处理。了解超表面在光学以及量子领域方面的应用,学会使用仿真软件对超表面结构进行仿真以及后续的结果分析。
4. 知道MATLAB与COMSOL以及Python间的交互方式,学会使用 Python处理COMSOL导出的数据,了解如何使用 MATLAB 将 COMSOL 的数据导出并处理为 Python 能读取的数据。
5. 了解硅基光网络的发展现状,知道矩阵分解的原理,学会使用深度学习框架去搭建一个基于MZI的模型框架并将其应用在深度学习实例上。
6. 未来利用光的加速功能,基于片上的光网络可以设计出具有加速功能的光芯片。基于衍射网络,则可以在自由空间上设计出快速成像系统,加速自动驾驶的图像识别。
7. 利用深度学习模型,可以克服传统基于全波模拟的设计方法的劣势,可以快速给出给定 结构的目标响应,加速光学设计的过程。
深度学习第一性原理目标:
一、掌握第一性原理计算在材料科学中的基础知识与应用:
1、DFT概述:理解密度泛函理论的基本概念和应用范围,了解DFT在材料特性预测中的重要性。
2、材料特征工程:学习如何构建和优化材料的计算模型,包括特征提取、特征选择和数据预处理。
二、熟练掌握Python编程及DFT计算框架:
1、Python编程基础:熟悉Python在材料计算中的应用,包括数据处理、矩阵运算和模型可视化工具。掌握NumPy、Pandas、Matplotlib等库的基本用法。
2、DFT计算框架使用:学习Quantum ESPRESSO、VASP等DFT计算软件的基础,掌握计算任务的设置、提交与结果分析。
三、构建与优化材料科学的DFT计算模型:
1、二维材料电子性质预测:学习如何使用DFT模拟二维材料的电子结构,分析其物理性质。
2、材料力学性能计算:使用DFT计算预测材料的力学性能,包括杨氏模量、硬度和屈服强度等关键性能。
四、第一性原理在高级材料科学问题中的应用与实践:
1、铁基超导材料的电子结构与性能预测:掌握如何通过DFT计算模拟铁基超导材料的电子结构和物理性质。
2、纳米管、异质结等复杂材料体系的建模:学习构建和优化复杂材料模型的技巧,预测其在不同条件下的性能。
机器学习材料专题目标:
一、材料物理学与机器学习基础
深度学习材料专题目标:
一、掌握深度学习在材料科学中的基础知识与应用
1、深度学习概述:理解深度学习的基本概念、常见架构(如神经网络、卷积神经网络等),以及深度学习在材料特性预测中的应用。
2、材料特征工程:学习如何进行材料科学数据的特征工程,包括特征提取、特征选择和数据预处理,为深度学习模型提供高质量的输入。
3、常见深度学习方法的原理:掌握适用于材料科学的深度学习方法,如CNN、RNN、LSTM、GRU、Transformer等,了解这些模型的适用场景和应用范围。
二、熟练掌握Python编程及深度学习框架
1、Python编程基础:熟悉Python在深度学习中的应用,包括数据处理、矩阵运算和模型可视化工具。掌握NumPy、Pandas、Matplotlib等库的基本用法。
2、深度学习框架使用:学习Pytorch、Keras、TensorFlow等深度学习框架的基础,掌握模型构建、训练、验证的基本流程。
3、模型优化技术:掌握Pytorch Lightning和Keras/TensorFlow Lightning等框架中的早停、最佳保存点等训练优化技巧,能够在实际项目中提高模型的性能。
三、构建与优化材料科学的深度学习模型
1、卷积神经网络(CNN)应用于材料图像分析:学习如何用CNN模型对材料的微观结构图像进行特征提取、分类及裂纹检测,提升材料图像分析能力。
2、材料力学性能与物理特性预测:使用深度学习模型(如神经网络、卷积神经网络等)对材料的力学和物理性能进行预测。包括杨氏模量、硬度、屈服强度等关键性能预测。
3、时序神经网络应用:学习LSTM、GRU等时序神经网络,进行材料疲劳寿命、相变过程、时序特性(如电阻率、临界电流)的预测,掌握基于历史数据的动态分析。
4、生成模型与结构设计:学习生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型等生成模型,实现新材料结构设计、晶体结构生成等应用。
四、深度学习在高级材料科学问题中的应用与实践
1、多任务学习与模型集成:掌握如何集成多种深度学习方法,用于材料特性预测、微观结构识别及多任务学习,以提高模型的泛化能力。
2、图神经网络(GNN)应用于晶体结构预测:学习图神经网络的基本概念及在材料科学中的应用,能够对原子间相互作用建模,实现晶体结构预测与材料的性质推断。
3、透射电镜(TEM)与扫描透射电镜(STEM)图像分析:掌握对高分辨图像进行去噪、增强和特征提取的技术,利用深度学习识别TEM和STEM图像中的晶体缺陷、位错等微观结构特征。
4、深度学习与实验数据结合的应用:能够使用XRD图谱、STEM图像、力学性能数据等实验数据集,结合深度学习模型实现晶体结构、材料类别及性能预测。
5、自主建模与项目实战:在综合项目中,应用以上知识和技能,完成材料微观结构预测、力学性能预测、晶体结构生成等高级应用。通过项目实践提升实际操作能力,为后续科研或工业应用打下坚实基础。
讲师介绍
深度学习光学设计主讲老师:主讲老师团队来自全国重点大学、国家“985工程”物理与信息交叉学科专业,有多年的机器学习和课题组科研经历!研究方向涉及光学设计与物理学,深度学习,机器学习等交叉领域。有着丰富知识积累和实战经验。参与国自然科学基金项目多项等,包括发表SCI论文十余篇,国家发明专利一项!担任过MDPI旗下等多个期刊的审稿人。
深度学习第一性原理主讲老师:主讲老师来自中国顶尖高校,在机器学习、深度学习算法与材料物理模拟领域拥有丰富的研究与教学经验,专注于深度学习算法优化、第一性原理计算与超导材料研究。多年来致力于运用机器学习和深度学习技术推动材料设计与性能优化,特别是在机器学习算法、二维材料及超导材料物理方向取得了卓越成果。以第一作者或通讯作者身份在 Advanced Materials、Advanced Functional Materials、ACS Nano、Nano Letters 和 Physical Review B 等顶级期刊发表论文二十余篇。
机器学习材料与深度学习材料主讲老师:来自中国TOP1高校,在国内顶尖教授组中从事材料领域研究,光学声学材料物理方向,在机器学习深度学习辅助的材料设计研究领域深耕多年,具有丰富的经验和扎实的基础。以第一作者或通讯作者在AM,AFM、ACS nano、JMR,ES等行业顶级期刊发表论文二十余篇,参与过多项国家级项目,担任JMR、APl等多个杂志的审稿人。
专题一:深度学习光学设计专题
第一天
第一章 导论
第一节 深度学习与光网络综述
1.1 衍射神经网络
1.2 片上集成光学神经网络
第二节 深度学习与超表面反向设计综述
第三节 光网络与超表面反向设计的挑战
第四节 光网络与超表面反向设计未来的发展趋势
第二章 软件基础知识(Python实操)
第一节 Python 环境的搭建
1.1 Anaconda 、Numpy、Matplotlib 和 Pandas 安装
1.2 虚拟环境的搭建以及 Pytorch 安装
1.3 Pytorch GPU 版本的安装
第二节 Python 的基础教程
2.1 Python 常见的数据结构与数据类型
2.2 Numpy 基础教程
2.3 Pandas 基础教程
2.4 Matplotlib 基础教程
第三节 Pytorch 基本教程
3.1 数据操作
3.2 数据预处理
3.3 线性代数
3.4自动微分
第三章 深度学习模型(python实操)
第一节机器学习基本组件
第二节线性神经网络实例
2.1线性回归
2.2softmax 回归
第三节多层感知机实例
3.1多层感知机
3.2权重衰减
3.3Dropout
第四节卷积神经网络实例
4.1从全连接层到卷积
4.2通道和汇聚层
4.3卷积神经网络(LeNet)
第五节循环神经网络实例
5.1序列模型
5.2语言模型和数据集
5.3循环神经网络
第二天
第四章 基于马赫-增德尔干涉仪的光计算
第一节光计算及光神经网络的简介
1.1光计算的背景介绍
1.2光神经网络的发展与分类
1.3光神经网络的研究现状
第二节基于MZI的光神经网络原理
2.1全连接神经网络原理讲解
2.2MZI级联的相干光矩阵计算原理
2.3N阶酉矩阵分解
2.4基于MZI拓扑级联的酉矩阵通用架构
第三节训练数据集的获取与处理(Python 实操)
3.1Python程序环境安装
3.2Pycharm主要功能介绍
3.3数据集的获取方法
3.4训练数据集的前期处理
第四节酉矩阵通用架构的搭建(Python 实操)
4.1 二阶酉矩阵的搭建
4.2 clement架构的搭建
第五节光神经网络的模型运行(Python 实操)
第三天
第五章 超材料
第一节超材料概述
第二节光子晶体(COMSOL实际操作)
2.1 光子晶体基础和应用
2.2 传递矩阵方法求解一维光子晶体能带
2.3 平面波展开法求解一维光子晶体能带
2.4 有限元法求解光子晶体能带
2.4.1二维正方晶格能带
2.4.2二维正方晶格光子晶体板能带
2.4.3二维三角晶格光子晶体板能带
2.4.4二维六角晶格光子晶体板能带
2.5 光子晶体板中的连续谱束缚态(BIC)及其拓扑荷的计算
第三节超表面在光场调控中的作用
3.1相位调控
3.2光强调控
3.3偏振调控
3.4频率调控
3.5联合调控
第四节超表面仿真实例(COMSOL 实际操作)
4.1 频率选择表面周期性互补开口谐振环
4.2 超表面光束偏折器
第五节超构表面在量子光学中的研究与应用
5.1量子等离激元
5.2量子光源
5.3量子态的测量与操纵
5.4量子光学的应用
第四天
第六章 全光衍射神经网络
第一节标量衍射理论基础
1.1 惠更斯-菲涅耳原理
1.2 瑞利-索莫菲衍射公式
1.3 衍射角谱理论
1.4 离散傅里叶变换
第二节光学衍射神经网络(Python 实操)
2.1 人工神经网络结构
2.2 光学衍射神经网络结构
2.3 自由空间光学衍射神经网络
2.4 硅基集成衍射神经网络(Comsol 仿真)
第七章 硅光子学平台上矢量矩阵乘法的反向设计(COMSOL 实操)
第一节基于密度的拓扑优化
1.1前向传播场
1.2伴随场
1.3折射率插值
第二节有效折射率仿真
第三节向量乘法
第五天
第八章 基于深度学习的超表面反设计(COMSOL + python实操)
第一节 基于全连接实现全介质超表面的设计
1.1 超表面元的模拟
1.2 超表面元的参数提取
1.3 训练数据集的搭建
1.4 预测模型的训练
第二节 长短期记忆神经网络预测纳米鳍超表面极化灵敏度
2.1 长短期记忆神经网络搭建
2.2 超表面仿真
2.3 数据库建立
2.4模型训练
第三节 基于深度学习的混合全局优化设计超低损耗波导交叉
3.1 直接二分查找算法建立数据集
3.2 基于物理的生成对抗神经网络
3.3 模型训练与预测
专题二:深度学习第一性原理专题
第一天:第一性原理计算方法概述与基础理论
一、理论内容
1.深度学习在第一性原理中的应用和优势
2.第一性原理发展历程的介绍
3.文献综述
4.密度泛函理论(DFT)介绍
5.常用的原子建模环境软件——ASE和pymatgen
6.常用的第一性原理计算软件——VASP和GPAW
7.Python深度学习基础
7.1深度学习简介:神经网络的基础概念
7.2Python中的深度学习库:TensorFlow vs PyTorch
Numpy和Matplotlib基础知识
二、实操内容
1.DFT基础与应用:如何设置计算任务,参数调整与收敛性分析
2.使用Python进行材料模拟:通过Python实现简单的DFT计算与数据分析
3.原子建模环境软件ASE的使用:如何通过ASE进行结构优化与材料模拟
4.Python深度学习实操
4.1使用PyTorch构建简单的神经网络
4.2完成手写数字识别任务:MNIST数据集介绍与代码实现
4.3讲解PyTorch的基础操作:张量、自动求导和优化器
三、案例
1、二维材料的第一性原理计算:DFT计算单层石墨烯的电子结构与带隙
2、铁基超导材料的第一性原理计算:基于DFT计算铁基超导材料的电子态密度(DOS)与超导机制
3、Kagome晶格材料的第一性原理计算:计算Kagome材料的电子结构与磁性特征
4、电子-声子相互作用的计算:基于DFT与深度学习模型模拟材料中的电子-声子耦合效应
5、半导体材料的带隙计算:利用DFT计算半导体材料(如硅、氮化镓)的电子结构与带隙
第二天:深度学习在第一性原理计算中的应用——神经网络势函数(一)
一、课程内容
1.深度学习的发展历程和优势
2.人工神经网络与万能近似定理
3.常用的神经网络框架——Pytorch介绍
4.神经网络势函数的介绍
5.深度学习常用的激活函数、损失函数及优化方法
6.Python深度学习进阶
6.1神经网络的训练与验证过程
6.2使用PyTorch实现训练过程:数据加载、模型设计、训练与测试
6.3深度学习中的常用技巧:Dropout、批量归一化等
二、实操内容
1.深度学习项目实践:ResNet残差网络用于手写数字识别
2.收敛性测试的实战操作:如何设置ENCUT收敛性测试、K点收敛性测试
3.参数设置对计算结果的影响:如何通过优化参数提升计算精度
案例
1、太阳能电池的第一性原理计算:通过DFT计算有机光伏材料的吸收光谱与电荷迁移
2、石墨烯的电子结构计算:使用DFT分析石墨烯的电子结构及其导电性质
3、二硫化钼(MoS₂)的电子结构与光学性能:基于DFT与深度学习结合预测MoS₂的光学特性
4、位错生长的模拟:通过深度学习分析材料中的位错生长及其对材料力学性能的影响
5、超导材料(如铅)的能带结构与超导性质:基于DFT计算铅的能带结构与超导临界温度预测
第三天:深度学习在第一性原理计算中的应用——神经网络势函数(二)
一、课程内容
1.图神经网络(GNN)与MPNN消息传递神经网络
2.晶体图卷积神经网络CGCNN
3.SchNet与DimeNet++等不变消息传递神经网络的介绍
4.GNN与传统神经网络的区别
5.Python深度学习:图神经网络的实现
5.1GNN的原理及应用
5.2使用PyTorch Geometric库构建简单的图神经网络
5.3图卷积网络(GCN)的基础概念与代码实现
二、实操内容
1、深度学习实战:构建并训练一个简单的图神经网络模型(用于材料属性预测)
2、消息传递神经网络的训练与优化:如何训练GNN并进行参数优化
三、案例
1、共轭有机骨架结构(COFs)的结构与电子性质:通过DFT与图神经网络结合预测COFs的电子结构与能带
2、光子晶体的光学带隙预测:结合GNN与DFT计算光子晶体的光学带隙与光传输性质
3、GaAs半导体异质结的电子结构计算:基于DFT分析GaAs与其他半导体材料(如AlAs)异质结的带隙
4、量子阱结构的电子态密度:结合深度学习模型与DFT计算量子阱的电子结构与光学响应
5、太阳能电池光电转换效率的优化:使用深度学习优化太阳能电池材料的光电转换效率
第四天:深度学习在第一性原理计算中的应用——神经网络势函数(三)
一、课程内容
1.具有等变性的消息传递神经网络:等变性与不变性的区别
2.群论初步介绍与等变模型的应用
3.PaiNN、NequIP和Allegro模型的介绍
4.Python深度学习:等变神经网络实现
4.1介绍E(3)等变原子间势的构建
4.2使用NequIP与PaiNN进行分子动力学模拟
4.3代码实现:如何在深度学习模型中集成群论等变性
二、实操内容
1、PaiNN模型实战:如何实现PaiNN模型进行材料模拟
2、NequIP与Allegro模型的应用:通过这两个模型进行大规模原子动力学模拟
三、案例
1、超分子结构的稳定性与反应性:通过DFT与PaiNN模型结合分析超分子结构的稳定性与反应机制
2、催化剂表面反应机理的模拟:使用PaiNN与DFT结合预测催化剂表面的反应路径
3、WS₂等TMD材料的电子-光子相互作用:基于深度学习与DFT结合模拟MoS₂的电子-光子相互作用
4、GaAs材料的热电性能预测:结合NequIP与DFT预测GaAs的热电性质
第五天:深度学习在第一性原理计算中的应用——进阶内容
一、理论内容:
课程内容
1.分子动力学参数设置与深度学习模拟的结合
2.吸收光谱、反射光谱、拉曼光谱与红外光谱的计算方法
3.基于能量波动的结构稳定性评估
4.Python深度学习:进阶应用
4.1构建复杂的深度学习模型
4.2结合深度学习进行光谱预测与结构优化
4.3深度学习在模拟大规模系统中的应用与挑战
二、实操内容
1、基于深度学习的光谱计算:使用深度学习模型计算材料的吸收光谱、拉曼光谱等光学性质
1.1光谱计算背景:吸收光谱、拉曼光谱等可以提供材料的电子结构与振动模式等重要信息,通常通过DFT计算,但该过程计算量大,效率低。
1.2深度学习在光谱预测中的应用:通过神经网络模型(如图神经网络、卷积神经网络)进行光谱数据的预测,提高光谱计算的效率。
1.3模型训练与评估:利用DFT计算的材料光谱数据训练深度学习模型,通过交叉验证等技术提高预测准确度。
1.4深度学习模型的优化:如何调整神经网络架构、学习率等超参数,以提高模型的泛化能力和预测精度。
2、材料稳定性与力学性能计算:结合深度学习模型与DFT分析材料的稳定性、杨氏模量等力学性能
2.1DFT计算与深度学习结合:首先通过DFT计算材料的结构稳定性、能量最小化和力学性能(杨氏模量、剪切模量等),然后使用深度学习模型优化这一过程。
2.2深度学习在结构稳定性预测中的应用:通过训练神经网络,基于材料的结构参数预测其稳定性与力学性能,减少DFT计算的复杂性。
三、综合应用
1、量子阱材料的光电性质分析:通过深度学习与DFT结合分析量子阱材料的电子结构和光学响应
1.1背景介绍:量子阱材料因其在光电器件中的重要应用而广受关注。其电子态密度和光学性质直接影响器件的性能。
1.2DFT计算:通过DFT计算量子阱材料的能带结构和电子状态。
1.3深度学习结合DFT的光电性质预测:利用深度学习模型(如图神经网络)预测量子阱材料的光电转换效率和光学吸收特性。
1.4案例实现:使用训练好的神经网络模型,分析量子阱材料(如GaAs、InAs)的光电性质,优化材料设计。
2、超导材料的声子谱与超导临界温度预测
2.1DFT计算:计算超导材料(如铜氧化物、铅等)的声子谱。
2.2深度学习模型:使用神经网络(如PaiNN、NequIP)结合DFT计算数据,预测材料的超导临界温度。
2.3综合分析:将深度学习预测与实验数据进行比较,验证模型的准确性和可靠性。
3、光子晶体带隙与光学性能优化
3.1DFT计算:计算光子晶体材料的带隙结构和光学传输特性。
3.2深度学习优化:使用深度学习(如GNN)优化光子晶体的结构设计,提升光学性能。
3.3综合应用:通过深度学习与DFT结合,设计新的光子晶体材料,提升其带隙特性和光学传输性能。
4、深度学习在材料性能预测中的应用
4.1使用图神经网络(GNN)模型分析材料的晶体结构、声子谱等。
4.2结合PaiNN、NequIP等等变神经网络,提升材料性能预测的准确性。
5、材料设计与优化:使用深度学习对材料的结构进行优化设计,预测其物理性质、化学稳定性等。
6、深度学习与量子计算的结合:探讨深度学习在量子计算中的潜力,尤其是在处理复杂材料系统时的应用前景。
7、材料发现的自动化与智能化:未来如何利用深度学习与DFT结合,加速新材料的发现和优化设计。
专题三:机器学习材料专题
第一天:材料机器学习概述与Python基础
理论内容
1.机器学习概述
1.1机器学习的基本概念与分类
1.2机器学习与材料科学的交叉应用
2.材料与化学中的常见机器学习方法
2.1监督学习与无监督学习概述
2.2回归与分类算法简介
3.机器学习应用前沿
3.1机器学习在材料发现、催化、电子材料等领域的应用
4.编程基础理论:数据类型与数据结构
4.1Python中的基本数据类型(整数、浮点数、字符串、布尔值)
4.2常用数据结构:列表、元组、字典、集合
5.机器学习材料文献综述
案例详解
1.Python基础与开发环境搭建
1.1Python基本语法:变量、数据类型、控制流
2.Python科学数据处理
2.1使用NumPy进行矩阵操作与数据处理
2.2使用Pandas进行数据加载与清洗
2.3使用Matplotlib进行数据可视化
项目实操
1.Python基础与数据处理实战
1.1处理材料数据集
1.2可视化材料属性数据
编程案例
案例一:CO2催化活性的预测
通过机器学习预测材料对CO₂的催化活性,涉及数据预处理、特征提取、建模与评估。
案例二:材料数据清洗与可视化
使用Python对材料实验数据进行清洗,填补缺失值,并用Matplotlib进行可视化。
第二天:常见机器学习方法与实践 1 & 材料预测案例
理论内容
1.线性回归
1.1线性回归的原理与应用
1.2最小二乘法与梯度下降
2逻辑回归
2.1逻辑回归的原理与应用
2.2Sigmoid函数与模型训练
3.K近邻(KNN)
3.1K近邻的原理与应用
3.2距离度量与K值选择
4.编程理论:函数与模块
4.1如何在Python中定义函数
4.2模块化编程和代码复用
案例详解
1.线性回归的实现与初步应用
1.1使用scikit-learn实现线性回归,并通过交叉验证评估模型效果。
2.逻辑回归的实现与初步应用
2.1实现逻辑回归模型,预测材料的分类(如金属/非金属材料的预测)。
3.K近邻的实现与初步应用
3.1使用KNN算法进行分类问题的处理,分析材料的属性与类别关系。
项目实操
1.机器学习对CO2催化活性的预测
1.1数据采集、特征选择、模型训练与测试。
2.机器学习二维材料生长与结构预测
2.1使用机器学习预测二维材料(如石墨烯)生长过程中的结构特性。
编程案例
案例一:CO2催化活性预测
利用线性回归模型进行材料催化活性的预测,并使用交叉验证评估模型效果。
案例二:二维材料结构预测
使用KNN算法进行二维材料(如石墨烯)生长与结构预测。
第三天:常见机器学习方法与实践 2 & 材料表征与预测
理论内容
1.决策树
1.1决策树的原理与应用
1.2信息增益与CART算法
2.集成学习
2.1集成学习的原理与方法(随机森林、Boosting等)
2.2模型融合与多样性
3.朴素贝叶斯
3.1朴素贝叶斯的原理与应用
3.2条件概率与贝叶斯定理
4.编程理论:类与对象(面向对象编程)
4.1Python的面向对象编程基础
4.2类的定义与对象的使用
案例详解
1.决策树与随机森林的实现与应用
1.1使用决策树和随机森林进行材料特性预测。
2.朴素贝叶斯的实现与应用
2.1使用朴素贝叶斯进行材料分类问题的解决。
3.支持向量机(SVM)的实现与应用
3.1使用SVM进行材料分类,并分析其性能。
项目实操
1.使用集成学习预测二维材料(如C3N4及其掺杂材料)催化剂活性
1.1数据集准备、特征筛选、模型训练与优化。
编程案例
案例一:使用随机森林预测催化活性
使用集成学习方法(随机森林)对材料的催化活性进行预测。
案例二:决策树分类材料特性
使用决策树对材料的导电性、强度等特性进行分类。
案例三:SVM材料分类
使用SVM对不同材料的热导率进行分类,并对模型效果进行评估。
第四天:机器学习与相场结合与螺位错与枝晶生长预测
理论内容
1二维材料的特点与应用
1.1石墨烯、MXenes等二维材料的结构与性质
1.2二维材料计算物理基本范式
2.纳米光学超材料的设计与应用
2.1纳米超材料的电磁特性与光学响应
2.2纳米光学超材料计算物理基本范式
3.螺位错与枝晶生长的基本理论
3.1螺位错与枝晶生长对材料性能的影响
3.2相场法的入门与实践
案例详解
1.螺位错与枝晶结构的预测
1.1使用机器学习对螺位错与枝晶的生长过程进行建模与预测。
2.机器学习设计纳米光学薄膜超材料
2.1模拟和预测材料的微观结构演化。
项目实操
1.预测材料微观结构演化
1.1使用机器学习模型预测材料微观结构的变化过程。
编程案例
案例一:螺位错与枝晶生长的预测
使用随机森林或SVM预测螺位错与枝晶的生长过程,分析其对材料性能的影响。
案例二:纳米光学超材料设计
使用机器学习预测纳米光学超材料的性能并进行结构优化。
第五天:综合项目与高级实践
理论内容
1.材料数据与特征工程
1.1特征选择与降维技术
1.2使用Pymatgen和其他材料数据库
2.深度学习在材料科学中的应用
2.1深度神经网络(DNN)、卷积神经网络(CNN)在材料设计中的应用
3.超导材料概述
3.1超导材料的结构预测与性能建模
案例详解
1.特征工程与材料数据处理
1.1使用Pymatgen加载与处理晶体结构数据。
2.深度学习基础
2.1使用Scikit-learn实现简单的神经网络模型。
项目实操
1.机器学习加速发现耐高温氧化的合金材料
1.1数据集准备、特征构建与分析
1.2使用不同模型进行预测
2.机器学习超导材料结构预测
2.1基于超导材料的晶体结构与性能数据,使用机器学习进行超导性能的预测。
编程案例
案例一:超导材料结构预测
使用机器学习对超导材料的晶体结构与性能进行预测。
案例二:耐高温氧化合金预测
使用不同的机器学习模型对耐高温氧化的合金材料进行性能预测与优化。
专题四:深度学习材料专题
第一天:深度学习与材料特征工程
理论内容:
1.深度学习概述
2.常见可深度学习材料特征总结归纳
3.材料物理化学中的常见深度学习方法
4.文献综述
实操内容:
1.Pytorch、Keras、TensorFlow深度学习框架实操
1.1认识Pytorch、Keras、TensorFlow
1.2Pytorch、Keras、TensorFlow深度学习模型的建立范式
1.3为预测任务建立Pytorch、Keras、TensorFlow深度学习模型
2.Pytorch、Keras、TensorFlow Lightning框架实操
2.1使用Pytorch、Keras、TensorFlow Lightning训练模型
2.2设置最佳保存点和早停
案例:
案例一:二维材料的生长与结构预测:使用深度学习模型预测二维材料(如石墨烯、二硫化钼等)的生长模式和可能的晶体结构。输入包括不同环境条件(温度、压力等)和初始原子配置。
案例二:二维材料的力学性能预测:基于材料的微观结构,利用神经网络预测二维材料的力学性质,如杨氏模量、屈服强度等。
案例三:合金成分预测:通过训练神经网络预测不同合金成分的力学性能(如硬度、强度、延展性等),数据集可以包含各种合金的成分及其实验测试结果。
第二天:常见的深度学习算法、应用及实践1
理论内容:
1.卷积神经网络(CNN)
1.1CNN的介绍
1.2CNN的原理
1.3ResNet的介绍及原理
项目实操内容:
1.1CNN入门案例、深度神经网络模型的预训练及微调
1.2使用微调的预训练ResNet预测MNIST数据集
1.3从头开始训练ResNet预测MNIST数据集
2.卷积神经网络在材料图像分析中的应用
2.1使用卷积神经网络(CNN)对材料的微观结构图像进行分类(如不同的合金微观结构或材料的相图图像)。
3.材料的裂纹检测
3.1使用CNN分析材料图像中的裂纹、缺陷等不连续性,以预测其健康状态。
案例:
案例一:纳米光学超材料结构预测:
使用深度学习模型预测纳米光学超材料的光学特性,如光透过率、吸收率等。输入包括材料的几何结构(如周期性图案)、原子成分等。
案例二:纳米光波导结构优化:
利用深度学习模型优化光波导的结构,预测不同设计下波导的传输效率、模式分布等。
案例三:预测材料的机械性能:
通过分析不同材料的微观结构图像(如扫描电子显微镜图像),利用深度学习模型预测其抗拉强度或其他机械性能。
第三天:材料性能预测与机器学习模型
理论内容:
1.数据集准备与处理
2.使用Pytorch、Keras、TensorFlow训练一维/二维材料性能预测模型
3.Pytorch、Keras、TensorFlow模型验证与测试
项目实操内容:
1.预测材料硬度:使用神经网络模型预测不同材料(如钢铁、铝合金、陶瓷等)的硬度。数据集包含材料的元素组成、晶格结构、加工方式等特征。
2.合金材料的强化预测:根据合金成分(如添加元素、元素比例等),预测其抗拉强度、屈服强度等机械性能。
3.材料相变预测:使用深度学习模型预测不同条件下材料的相变(如从固态到液态的温度,或者不同温度下的相变类型)。
案例:
案例一:螺位错与枝晶生长预测:
使用深度学习模型预测合金在不同冷却速率下的螺位错结构和枝晶生长模式。输入为合金的成分、冷却条件等。
案例二:XRD图谱数据预处理与深度学习
1.数据集准备:
1.1使用实验或模拟生成的XRD图谱数据集,每个数据样本包含不同材料的XRD图谱,以及材料的晶体结构信息(例如:面心立方、体心立方、六方密堆积等)。
1.2XRD图谱通常是一个二维信号,横坐标是2θ角,纵坐标是衍射强度。
2.数据预处理:
2.1将XRD图谱进行标准化,以便在深度学习模型中进行训练。
2.2通过平滑处理或傅里叶变换减少噪声。
3.深度学习模型:
3.1使用卷积神经网络(CNN)来提取图谱特征,并结合传统的分类方法(例如支持向量机、随机森林等)进行最终的材料分类或晶体结构识别。
3.2输入:XRD图谱数据
3.2输出:预测的晶体结构或材料类别
第四天:时序神经网络(RNN, LSTM, GRU, Transformer)
理论内容:
1.时序神经网络
1.1RNN的介绍及原理
1.2LSTM的介绍及原理
1.3GRU的介绍及原理
1.4Transformer的介绍及原理
项目实操内容:
1.LSTM & GRU入门案例
1.1使用Pytorch、Keras、TensorFlow实现时序预测模型
1.2训练LSTM模型
1.3训练GRU模型
1.4模型评估
2.时序材料性能预测
2.1基于LSTM/GRU模型预测材料的疲劳寿命。输入为材料的历史负载数据、应变数据等,输出为材料的剩余寿命。
案例:
案例一:螺位错与枝晶生长的时序预测:
基于LSTM或GRU模型预测合金在不同时间步骤下的螺位错结构演化及枝晶生长过程。输入为材料成分、冷却速率、温度等参数。
案例二:超导材料的时序特性预测:
使用LSTM或Transformer模型,基于不同条件(如温度、压力等)预测超导材料的电阻率、临界电流等时序特性。
案例三:STEM图像模拟与深度学习分析
1.STEM图像模拟:
1.1使用现有的量子力学模拟代码生成STEM图像,或者基于模拟的原子模型来模拟电子束与材料的相互作用。
1.2 STEM图像通常具有非常高的分辨率,展示了材料表面原子级别的细节。
2.深度学习数据处理:
2.1对STEM图像进行去噪和增强,以改善图像质量并提高模型的准确性。
2.2通过卷积神经网络(CNN)对STEM图像进行自动特征提取,识别材料的微观结构、晶体缺陷等特征。
3.深度学习模型训练:
3.1使用卷积神经网络(CNN)或UNet架构对STEM图像进行分类或分割任务,提取不同类型的缺陷(如位错、孔洞等)或其他结构特征。
3.2输入:STEM图像
3.3输出:材料的晶体缺陷、位错类型、晶体结构等。
第五天:生成模型与图神经网络
理论内容:
1.生成模型
1.1生成对抗网络(GAN)的介绍及原理
1.2变分自编码器(VAE)的介绍及原理
1.3扩散模型(Diffusion Model)的介绍及原理
2.图神经网络(GNN)
2.1图神经网络(GNN)的介绍及原理
项目实操内容:
1.基于VAE逆向生成晶体材料
1.1晶体结构体素空间编码
1.2使用变分自编码器进行晶体结构自动生成
1.3变分自编码器的潜空间采样
2.基于Transformer架构的自回归模型生成指定空间群的晶体材料
2.1基于Transformer架构的自回归模型
2.2基于对称性的晶体结构表示
2.3使用训练好的自回归模型进行指定空间群的晶体材料生成
案例:
案例一.基于VAE生成预测二维材料结构与性能
案例二.透射电镜(TEM)图像分析与深度学习
1.TEM图像预处理:
1.1TEM图像通常用于观察材料的内部结构,尤其适用于晶体结构、相分布、位错、缺陷等的观察。
1.2对TEM图像进行去噪处理,并且进行图像增强,如直方图均衡化、对比度提升等。
2.深度学习分析:
2.1训练卷积神经网络(CNN)对TEM图像进行分类或分割,识别材料的微观结构特征。
2.2结合生成对抗网络(GAN)模拟材料的TEM图像,以预测不同条件下的微观结构变化。
3.深度学习模型训练:
3.1使用CNN来对TEM图像进行结构识别,标记出不同的晶体区域、缺陷位置、材料的相界面等。
3.2输入:TEM图像数据
3.3输出:分类结果(如不同相的晶粒、缺陷类型)或分割结果(如晶界、相界面等区域)。
课程特色与授课方式
线上授课时间和地点自由,建立专业课程群进行实时答疑解惑,理论+实操授课方式结合大量实战案例与项目演练,聚焦人工智能技术在多个科研领域的最新研究进展,课前发送全部学习资料,课程提供全程答疑解惑;
完全贴合学员需求的课程体系设计,定期更新的前沿案例,由浅入深式讲解,课后提供无限次回放视频,免费赠送二次学习,发送全部案例资料,永不解散的课程群,可以与相同领域内的老师同学互动交流问题,让求知的路上不再孤单!
增值服务
1、凡参加人员将获得本次课程学习资料及所有案例模型文件;
2、课程结束可获得本次所学专题全部回放视频;
3、课程会定期更新前沿内容,参加本次课程的学员可免费参加一次本单位后期举办的相同专题课程(任意一期)
课程会议完毕后老师长期解疑,课程群不解散,往期会议学员对于会议质量和授课方式一致评价极高!
学员对于会议答疑给予高度评价!
课程时间
深度学习光学设计:
2024.12.09----2024.12.13(晚上19.00-22.00)
2024.12.16----2024.12.20(晚上19.00-22.00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
深度学习第一性原理:
2025.01.04----2025.01.05(上午9.00-11.30下午13.30-17.00)
2025.01.08----2025.01.09(晚上19.00-22.00)
2024.01.11----2024.01.12(上午9.00-11.30下午13.30-17.00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
机器学习材料:
2024.12.21----2024.12.22(上午9.00-12.00下午14.00-17.00)
2024.12.27----2024.12.28(晚上19.00-22.00)
2024.12.29----2024.12.30(上午9.00-12.00下午14.00-17.00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
深度学习材料:
2024.12.25----2024.12.26(晚上19.00-22.00)
2025.01.02----2025.01.03(晚上19.00-22.00)
2025.01.04----2025.01.05(上午9.00-12.00下午14.00-17.00)
2025.01.07----2025.01.08(晚上19.00-22.00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
课程费用
课程费用:
深度学习光学设计、机器学习材料、深度学习材料、深度学习第一性原理
每人每班¥4680元(包含会议费、资料费、提供课后全程回放资料)
重磅优惠:
早鸟价优惠:提前报名缴费学员可得300元优惠(仅限前15名)
套餐价:
同时报名两个课程¥9080元 (原价14640,可任选三门专题学习)
报二赠一(同时报名两个专题可以免费赠送一个学习名额,赠送班任选)
年报优惠:可免费学习一年特惠:20880元(可免费学习一整年本单位举办的任意课程)
年末福利:现在报名一门课程即可赠送一门往期课程回放(后期可免费参加一期相同专题直播课程学习)
往期回放视频专题课程:机器学习分子动力学专题、深度学习声学超材料专题
(可点击课程名称查看详细内容)
报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销
报名联系请扫描下方二维码